
Coding-based Energy Minimization
for Phase Change Memory

Azalia Mirhoseini
Electrical and Computer
Engineering Department,

Rice University
azalia@rice.edu

Miodrag Potkonjak
Computer Science

Department, University of
California, Los Angeles

miodrag@cs.ucla.edu

Farinaz Koushanfar
Electrical and Computer
Engineering Department,

Rice University
farinaz@rice.edu

ABSTRACT
We devise new coding methods to minimize Phase Change
Memory write energy. Our method minimizes the energy
required for memory rewrites by utilizing the differences be-
tween PCM read, set, and reset energies. We develop an
integer linear programming method and employ dynamic
programming to produce codes for uniformly distributed
data. We also introduce data-aware coding schemes to effi-
ciently address the energy minimization problem for stochas-
tic data. Our evaluations show that the proposed methods
result in up to 32% and 44% reduction in memory energy
consumption for uniform and stochastic data respectively.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Memory Technologies

General Terms
Algorithms, Performance, Design

Keywords
Phase Change Memory, Energy Efficient Coding

1. INTRODUCTION
The demand for data and information storage has been

upsurging at an unprecedented rate, continually fueling im-
provements for underlying memory technologies. However,
it has become clear that alternative technologies are neces-
sary to fulfill the requirements of developing devices and ap-
plications beyond the near future. In addition to these tech-
nology developments, redesigned architectures, tools, and
system-level methodologies are needed to take advantage of
the properties of the latest digital storage media.

One very promising emerging non-volatile storage tech-
nology is Phase-Change Memory (PCM). PCM data storage
exploits the large electrical resistance difference between two

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2012, June 3-7, 2012, San Francisco, California, USA.
Copyright 2012 ACM 978-1-4503-1199-1/12/06 ...$10.00.

states of the phase-change material. In one state, the ma-
terial is amorphous with a high resistance; in another, the
material is crystalline and highly-conductive. After more
than a decade of dedicated research into new forms of phase
change media, PCM technology is finally available on the
market. Recent announcements indicate advances towards
multi-level phase change memory with improved integration,
retention, endurance, and yield characteristics [19].

This paper aims at minimizing the energy cost of rewriting
to PCM by creating low overhead data encoding methods.
The proposed encoding scheme utilizes PCM bitwise ma-
nipulation ability during the word overwrites; only the bits
that are changing for the new word compared to the existing
word in the memory location would require overwriting. Our
new encoding scheme ensures that the energy cost for the
required overwrites is minimized at the expense of adding a
small number of additional bits for encoding. Our formu-
lation and solutions incorporate the fact that the PCM set
and reset energy costs are not equal (see Appendix A). This
asymmetric model captures the inherent physical differences
between the organized crystalline and amorphous state tran-
sitions. To the best of our knowledge, this is the first work
that utilizes PCM asymmetric set and reset energy behavior
to minimize energy consumption. Our optimization is eas-
ily integrable within the processor architecture and memory
interface with a very low complexity and overhead.

A special case of data encoding for minimizing the unidi-
rectional transitions in the memory is the Rivest and Shamir
Write-Once Memory (WOM) coding which assumed a mem-
ory model where the bits could only be set (and could not
be reset) [17]. The goal was to increase the number of ef-
fective cycles for memory rewrites. Subsequent work fol-
lowed, mostly in information theory and coding with the
goal of estimating the capacity and finding more efficient
WOM codes. Applications and extension of this model for
addressing the flash memory device lifetime improvements
were studied [8, 20]. Unfortunately, the assumptions made
in the earlier theoretical work limits their applicability to
PCM because they do not capture PCM bi-directionality
and bit-level access properties.

The large space of possibilities provided by the free-
dom in both setting and resetting transitions and bit-
programmability motivate the development of new type of
codes that can be applied for improving PCM write energy.
The complicating factors are the new degrees of freedom
and the curse-of-dimensionality resulting from the exponen-
tial number of plausible code combinations. To address the
challenges, this paper presents a novel formal handling of the

68

energy minimization that is appropriate for PCM and other
storage technologies with bit-level access while simultane-
ously considering the asymmetric set and reset transition
energy costs. The paper’s contributions are:

∙ We introduce a formal treatment and formulation of
PCM coding, with the goal of minimizing the energy.
We show that the problem is NP-complete.

∙ A methodology for deriving the optimal bounds for
minimum energy data encoding problem is developed.

∙ We devise an Integer Linear Programming (ILP) for-
mulation that can find the optimal codes. Our ILP
framework can integrate both symmetric and asym-
metric set/reset costs for different code sizes.

∙ For runtime and efficiency reasons, we develop an alter-
native rapid and efficient algorithm for addressing the
problem. The method builds upon the smaller optimal
codes using a Dynamic Programming (DP) approach.

∙ We introduce an efficient distribution-aware data en-
coding method for non-uniformly distributed data.

∙ Our evaluations on a diverse set of benchmark data
show significant gains in PCM energy performance.

The remainder of the manuscript is organized as follows.
The relevant literature is surveyed in Section 2. The ar-
chitecture of the method is presented in Section 3. Section
4 formally defines the energy saving data encoding prob-
lem and discusses its complexity. Our method for finding
the optimum bounds on the codes is presented in the same
section. In Section 5 we introduce the coding algorithms.
Evaluations of the methods on several benchmark data sets
are presented in Section 6. We conclude in Section 7. Ac-
knowledgements are presented in Section 7.1. We provide
complementary methods and discussions in the Appendix.

2. RELATED WORK
The field of resistive memory material has been rapidly

growing in recent years, both in research and in terms of in-
dustrial prototypes, making PCM the most viable emerging
technology for the next generation storage devices [13, 19].
Recent work has shown significant efficiency and improve-
ments in memory structures by integrating the PCM within
the storage hierarchy [10, 14, 21].

Previous PCM research has demonstrated that the
PCM endurance, reliability, and energy consumption would
greatly improve if redundant writes are avoided, i.e., by
reading the existing contents of the bits and only program-
ming those bits that must be changed [21]. Flip-N-Write is
a protocol that adds an indicator bit to each word to deter-
mine if the word is inverted or not, [9]. PCM controller can
write the data in an inverted form if it requires less number
of bit changes. No optimality proof was provided.

Our paper formalizes, provides proofs and generalizes the
Flip-N-Write method by devising codes of length 𝑁 +𝐾 for
words of length 𝑁 , where 𝐾 ≥ 1. Our approach, for the first
time in the literature, considers the asymmetric set and reset
energy costs. We will show that significant improvements in
energy are achieved at the expense of memory overhead.

Write-Once Memory (WOM) encoding was introduced in
[17] to increase the number of writes to uni-directional mem-
ories. The NAND flash memory has been modeled as a one-
way transitional memory and generalizations of the WOM
codes have been applied to it [8, 20]. However, the WOM
model and the flash encoding methods do not capture PCM
properties including bit-level access and asymmetric energy
costs. The bit-level operations for PCM have been used ear-
lier for error correcting codes [18].

The WOM model has also been naturally extended to the
family of Write-Efficient Memory [7], with the objective of
minimizing the overall number of transitions. However, to
the best of our knowledge, the few papers available on WEM
have mainly focused on developing loose bounds without
providing an optimality guarantee, or they centered on con-
structing suitable error correcting codes, e.g., [12, 15].

3. ENCODING ARCHITECTURE
Figure 1 presents an abstract view of the placement of

the data encoding/decoding module for our method. Our
algorithms for devising the codes are run off-line, so their
runtime complexity does not affect the realtime chip perfor-
mance. The energy saving codes resulting from our algo-
rithms are then saved in the memory controller which inter-
faces to the PCM on one side and to processing units on the
other side. The memory controller may also be interfaced
to other storage devices in the memory hierarchy. The com-
plexity of runtime encoding and decoding will be discussed
in Section 5.3. Our consistent assumption is that the read
energy consumption is negligible compared to that of set and
reset [21]. More details of the PCM operation and energy
characteristics can be found in Appendix A.

CPU

Memory

Controller

Data Code/

Decode

Misc.

Memory

PCM

Figure 1: Data encoding/decoding module is a part
of memory controller and is interfaced to the PCM.

4. PROBLEM FORMULATION, COM-
PLEXITY AND BOUNDS

Our goal is to minimize the energy cost associated with
writing words to the memory. Each word consists of a fixed
number of bits and the energy cost of writing the word is
equal to the total cost of the required bit flips (sets/resets).

We provide an optimal encoding scheme that assigns mul-
tiple representations (or codes) to each word in the data set.
The objective of encoding is to minimize the energy cost for
writing the next word of data. The method trades-off the
encoding data overhead with resulting energy improvements.

We have shown that assigning the best codes to each word
is equivalent to clustering the vertices of a graph where each
cluster represents a word (See Appendix B for an example).
Clustering should be done such that it yields the minimum
distance between the vertices of different clusters. We can
formally define our problem as follows:

Problem. Minimize the energy cost of PCM rewrites.

69

Given. The word and the codeword (symbol) lengths in bits
denoted by 𝑁 and 𝑁 +𝐾 respectively, where 𝐾 ≥ 1. Each
word is represented by 2𝐾 symbols. The read, set and reset
energies are denoted by 𝐸𝑟𝑒𝑎𝑑 and 𝐸𝑆 and 𝐸𝑅 respectively.

Objective. Find the best codes for each word so as to
minimize the average energy cost of overwrites. We refer to
this problem as 𝒫(𝑁,𝐾).

4.1 Problem Formulation
We denote the words by 𝑊1,𝑊2, . . . ,𝑊2𝑁 and denote the

codes corresponding to word 𝑊𝑖 by 𝑍𝑙𝑖, where 1 ≤ 𝑙 ≤ 2𝐾 .
The cost function 𝐶 measures the amount of energy con-

sumed to overwrite a symbol by another one. To overwrite
𝑍𝑙𝑖 with 𝑍𝑙′𝑖′ , if 𝑁𝑆 number of bit sets and 𝑁𝑅 number of
bit resets are needed, then 𝐶 would be:

𝐶(𝑍𝑙𝑖, 𝑍𝑙′𝑖′) = (𝑁 +𝐾).𝐸𝑟𝑒𝑎𝑑 + (𝑁𝑆).𝐸𝑆 + (𝑁𝑅).𝐸𝑅. (1)

The first term on left shows the energy for reading 𝑍𝑙𝑖. This
cost is negligible due to PCM high read efficiency. The next
two terms show the energy for the overwrite process (setting
and resetting) so as to get 𝑍𝑙′𝑖′ . Similar bits in the two
symbols remain untouched. Function Φ gives the energy
required to overwrite a currently written symbol 𝑍𝑙𝑖 by a
symbol of the next word 𝑊𝑙′ that incurs the minimum cost:

𝜙(𝑍𝑙𝑖,𝑊𝑙′) = min{𝐶(𝑍𝑙𝑖, 𝑍𝑙′𝑖′), ∀1 ≤ 𝑖′ ≤ 2𝐾}. (2)

The Objective Function (OF) can be written as follows:

OF : min{𝒞(𝑁,𝐾) =
1

22𝑁+𝐾

∑
1≤𝑙,𝑙′≤2𝑁

∑
1≤𝑖≤2𝐾

𝜙(𝑍𝑙𝑖,𝑊𝑙′)}. (3)

The minimization is over all possible partitioning of the sym-
bols to the words. Function 𝒞(𝑁,𝐾) represents the average
energy cost of code overwrites for all possible rewrites.

4.2 Problem Complexity
We construct a transformation of the energy minimizing

coding problem to a distance-based graph clustering prob-
lem where each cluster corresponds to a word (Appendix B).
The goal is to minimize the inter-cluster distances. In our
problem, the inter-cluster distance is the mean distance be-
tween the code symbols in one cluster and the closest code
symbol in every other cluster. Extensive prior work on the
class of distance-based graph clustering have shown that this
problem is NP-complete. The proof was given by a reduction
from the set covering problem [11].

4.3 Optimal Bounds on the OF
We develop a method for finding a lower bound for the

OF. The average cost of overwriting each symbol 𝑍𝑙𝑖 with
the other words is determined by the following formulation:

1
2𝑁−1

∑
𝑙′ 𝜙(𝑍𝑙𝑖,𝑊𝑙′) for 𝑙′ ∕= 𝑙 and 1 ≤ 𝑙′ ≤ 2𝑁 . An optimal

code assignment is the one that assigns each of the closest
2𝑁 − 1 symbols to 𝑍𝑙𝑖 to one of the words 𝑊𝑙′ ∕= 𝑊𝑙.

We construct a lower bound for the OF as follows. First,
we calculate the distances from each code 𝑍𝑙𝑖 to all the other
2𝑁+𝐾 − 1 possible codes. Next, the resulting distances are
sorted and the average sum of the smallest 2𝑁 − 1 distances
are calculated for each node. The computational complexity
of this method is 𝑂(2𝑁+𝐾𝑁 +𝐾). Based on the fact that
the practical values for the memory word and code lengths
are chosen relatively small (as we discuss in the evaluation

results) and that the procedure is performed off-line, this
method is applicable and gives a lower bound for the OF.

5. ENERGY MINIMIZATION ENCODING
We propose two different approaches for solving the cod-

ing problem. Our first solution is based on mapping the
problem to an instance of an Integer Linear Programming
(ILP). An ILP formulation requires linear objective function
and constraints. The variables take integer values. There is
a combinatorial complexity associated with assigning values
to the variables of our NP-complete problem.

The OF represented in Equation 3 is non-linear since the
function 𝜙 is a distance minimization function. To formulate
the OF in a linear form, we define new indicator variables
for the distance of each symbol in a cluster to the closest
symbol in every other cluster. The OF is equivalent to the
average of all these variables. Certain linear constrains are
applied to ensure the variables meet the minimum distance
criteria. The ILP method finds the optimal solution at the
expense of runtimes exponentially increasing with the code
size. Due to space limitation, details of the ILP formulation
is discussed in Appendix C.

The second solution is based on Dynamic Programming
(DP) paradigm for uniformly distributed data. We also de-
velop codings for other data distributions that can further
minimize the energy.

5.1 Coding for Uniform Data Distributions
First, we show the optimal coding for solving 𝒫(𝑁, 1).

Next, we show how to devise the codes for any 𝒫(𝑁,𝐾)
based on the coding solutions for smaller 𝑁 and 𝐾 values.

5.1.1 Optimal Coding for 𝒫(𝑁, 1)

Claim: Optimal coding of 𝒫(𝑁, 1), for any 𝑁 ≥ 1 is
achieved by assigning the complement pairs of symbols to
the words. The complement of a symbol is derived by flip-
ping all its bits.
Proof: The optimal coding finds 2𝐾 = 2 symbols, each of
size 𝑁 + 1, for each word. For now, we assume that set and
reset cost equally. Then the overwrite cost is proportional to
the number of bitwise differences for the codes, 𝐸𝑅 = 𝐸𝑆 =
𝐸. The average transition cost from each code 𝑍𝑙𝑖 to all the
other words satisfies the following inequality:

1
2𝑁−1

∑
𝑙′ 𝜙(𝑍𝑙𝑖,𝑊𝑙′) ≤ 0.

(
𝑁+1

0

)
+ 𝐸.

(
𝑁+1

1

)
+ ⋅ ⋅ ⋅ +

𝑁−1
2
𝐸.
(𝑁+1

[𝑁−1
2

]

)
+ 𝑖𝑜.

𝑁+1
2
𝐸.
(𝑁+1

[𝑁+1
2

]

)
, for 1 ≤ 𝑙′ ≤ 2𝑁 .

Where 𝑖𝑜 = 1 if 𝑁 is odd and 𝑖𝑜 = 0 otherwise. The right
side of the inequality equals 𝐸.(𝑁+1)2𝑁−1. The proof of the
inequality is as follows. The nearest 2𝑁 codes to 𝑍𝑙𝑖 should
contain all the codes that have zero distance from it (that
is 𝑍𝑙𝑖 itself); the number of such codes is

(
𝑁+1

0

)
. It should

also include all the codes that are just one bit different from
𝑍𝑙𝑖; the number of such codes is

(
𝑁+1

1

)
. The next closest

set of codes are the ones that are different from 𝑍𝑙𝑖 in 2 bits
and so on. We continue until we reach to the first closest
2𝑁 codes to 𝑍𝑙𝑖. In that case, the number of bit differences
reach to 𝑁

2
when 𝑁 is even and 𝑁+1

2
when 𝑁 is odd. This

is because the following equation holds:(
𝑁+1

0

)
+
(
𝑁+1

1

)
+ ...+

(𝑁+1

[𝑁−1
2

]

)
+ 𝑖𝑜

(𝑁+1

[𝑁+1
2

]

)
= 2𝑁 , where 𝑖𝑜

is the same as defined before.
Now, we show that the complement-pair coding assigns

all the above 2𝑁 codes to different words. In this case, the
average transition cost for each code 𝑍𝑙𝑖 will be equal to its

70

Algorithm 1. DP-based method for energy-
aware coding
Inputs: Word and code lengths: N, N+K; 𝒞(𝑁, 1)

and optimal coding for 𝒫(𝑁, 1) from Section 5.1.1.
★ Finding 𝒞(𝑛, 𝑘) and the partitioning index
𝑖𝑛𝑑𝑒𝑥(𝑛, 𝑘, 1 : 2):

1 for (n=1 to n=N)
2 for (k=1 to k=K)
3 if (k==1)
4 𝒞(𝑛, 𝑘) = 𝒞(𝑛, 1);
5 else
6 for (i=1 to i=n-1)
7 for (j=1 to j=k-1)
8 if (𝒞(𝑛, 𝑘) ≥ 𝒞(𝑛− 𝑖, 𝑘 − 𝑗))
9 𝒞(𝑛, 𝑘) = 𝒞(𝑛−𝑖, 𝑘−𝑗)+𝒞(𝑖𝑗);
10 𝑖𝑛𝑑𝑒𝑥(𝑁,𝐾, 1 : 2)=(𝑖, 𝑗);
★ Building the codes for 𝒫(𝑁,𝐾):
11 for (n=1 to n=N)
12 for (k=1 to k=K)
13 if (k==1)
14 𝒫(𝑛, 𝑘) = 𝒫(𝑛, 1) from Section 5.1.1;
15 else
16 𝒫(𝑛, 𝑘) = all code combinations from

𝒫(𝑛−𝑖𝑛𝑑𝑒𝑥(𝑛, 𝑘, 1), 𝑘−𝑖𝑛𝑑𝑒𝑥(𝑛, 𝑘, 2))
and 𝒫(𝑖𝑛𝑑𝑒𝑥(𝑛, 𝑘, 1), 𝑖𝑛𝑑𝑒𝑥(𝑛, 𝑘, 2))

optimal value and thus the optimal OF is achieved. The
sum of bitwise differences of 𝑍𝑙𝑖 from any complement pair
(𝑍𝑙′1, 𝑍𝑙′2), is equal to 𝑁 +1. This is because each bit of 𝑍𝑙𝑖

is equal to exactly one of the bits of the complement pair.
Thus, one symbol of each word has a distance of less than
𝑁+1

2
bits and the other symbol has a distance of more than

𝑁+1
2

bits from 𝑍𝑙𝑖. This means that all the 2𝑁 − 1 closest
codes to 𝑍𝑙𝑖 belong to different words. ■

Note that our complement results for the 𝐾 = 1 case also
apply to the asymmetric set/reset costs. The number of
sets and resets for traversing from a code to its complement
is not symmetric for most of the code words. Recall that
our objective is to minimize the average costs over all pos-
sible transitions. It can be readily shown that for achieving
the mean cost, the average inter-complement distance can
replace the two disparate transition costs between the com-
plements. The results of the claim then directly follows.

5.1.2 DP-based approach to 𝒫(𝑁,𝐾)

We introduce a DP-based algorithm for solving the general
𝒫(𝑁,𝐾) problem. Our algorithm uses the coding results for
𝒫(𝑝, 𝑞) and 𝒫(𝑟, 𝑠) to construct the codes for 𝑃 (𝑝+ 𝑟, 𝑞+ 𝑠)
such that the following bounds can be achieved:

𝒞(𝑝+ 𝑟, 𝑞 + 𝑠) = 𝒞(𝑝, 𝑞) + 𝒞(𝑟, 𝑠). (4)

The code construction is as follows. The word 𝑊𝑖 of length
𝑝 + 𝑟 is partitioned into 2 words, 𝑊 1

𝑖 and 𝑊 2
𝑖 . The first

word is the first 𝑝 bits and the second word is the last 𝑟
bits of 𝑊𝑖. There are 2𝑞, 𝑝 + 𝑞-bit symbols for 𝑊 1

𝑖 and
2𝑠, 𝑟+ 𝑠-bit symbols for 𝑊 2

𝑖 that are obtained from solving
𝒫(𝑝, 𝑞) and 𝒫(𝑟, 𝑠) respectively. We construct the codes for
𝑊𝑖 by concatenating all the possible combinations of these
two set of symbols which provides a total of 2𝑞 × 2𝑠 = 2𝑞+𝑠

codes (of length 𝑝+ 𝑞 + 𝑟 + 𝑠) for 𝑊𝑖. It can be easily seen
that the codes satisfy Equation 4. Based on the above code
construction, the DP method breaks 𝑁 into smaller values

and selects the best partitioning to minimize:

𝒞(𝑁,𝐾) = min
𝑖≤𝑁

{min
𝑗≤𝑖

𝒞(𝑁 − 𝑖,𝐾 − 𝑗) + 𝒞(𝑖, 𝑗)}. (5)

Algorithm 1 provides the details of the DP method. The
optimal coding for 𝒫(𝑁, 1) is given from the previous part
and the algorithm iteratively traverses over all the possi-
ble partitions to improve the energy minimization objective
(Lines 1-10). The index vector 𝑖𝑛𝑑𝑒𝑥(𝑛, 𝑘, 1 : 2) is used to
store the optimal partitioning of (𝑛, 𝑘). After finding all the
indices, the algorithm builds the codes (Lines 11-16). The
complexity of the algorithm is 𝑂(𝑁2𝐾2), but recall that this
algorithm is run off-line.

5.2 Coding for Stochastic Data
OF 3 minimizes the average energy cost for all the pos-

sible word overwrites. Here, we discuss how the inherent
stochastic properties for real data scenarios can be exploited
for further energy improvements. An important feature is
that different words have differing frequencies. To benefit
from this fact, instead of weighting all the rewrite energy
costs equally, we aggressively optimize our encoding for the
rewrites that are more prevalent by assigning different num-
ber of codes to the words based on their frequency.

Variable-length and fixed-length coding are two statisti-
cal compression techniques. In the variable-length method,
shorter codes are assigned to the more frequent words to
better improve the compression. However, this adds to de-
coding complexity and since our main goal is to minimize
the energy, decoding efficiency is very important. Thus, we
use a fixed-length coding method. We describe our method
on text files. The method can be generalized to other data
sets with nonuniform frequencies. Our data consists of the
lower-case alphabet letters: 𝑊1 = 𝑎, 𝑊2 = 𝑏, ..., 𝑊26 = 𝑧.
Since there are 26 letter, 𝑊𝑖’s are 5-bit words.

Let us consider the first 7 most frequent letters of the ta-
ble, 𝑒, 𝑡, 𝑎, 𝑜, 𝑖, 𝑛 and 𝑠. The probability that an overwrite
occurs on any of these letters (by any other letter) plus the
probability that these letters overwrite any other letter ac-
counts for almost 60% of all probable overwrites. Thus, we
can benefit a lot by optimizing our coding for these seven
letters. To do so, we assign a different prefix to each of
these letters such that only the prefixes determine the let-
ter. Since there are 7 letters, the prefixes are 3-bit each and
are shown in Figure 2. The prefixes can be interpreted as
dictionary indices. The remaining 𝑁+𝐾 bits of these letters
take all the possible 2𝑁+𝐾 states. Thus, an overwrite to/by
any of these letters requires only adjusting the prefix that
is of length 3. The other 19 letters have the prefix (111) as
shown in the figure. The remaining 𝑁 +𝐾 bits for the less
frequent letters are filled with the codes obtained by solving
𝒫(𝑁,𝐾) as described in Subsection 5. Thus, an overwrite
between the letters costs as much as for a regular 𝒫(𝑁,𝐾).
By this coding, we assign 2𝑁+𝐾 symbols to the highly fre-
quent letters and 2𝐾 codes to the rest of the letters. All the
symbols are of length length of prefix-length+𝑁 +𝐾.

5.3 Runtime Coding/Decoding Complexity
As mentioned in Section 3, our algorithms for developing

code words are run off-line. The results of our algorithms
are then stored in the memory controller as a look-up ta-
ble. When writing a new word to the memory, there are
2𝐾 options for the word, where 𝐾 is a small constant num-
ber. In our evaluations we used 𝐾 in range 1-4. The coding

71

0 0 0 N+K-bit

Prefix

e

All 2N+K symbols

0 0 1 N+K-bit

Prefix

t

All 2N+K symbols

0 1 0 N+K-bit

Prefix

a

All 2N+K symbols

0 1 1 N+K-bit

Prefix

o

All 2N+K symbols

1 0 0 N+K-bit

Prefix

i

All 2N+K symbols

1 0 1 N+K-bit

Prefix

n

All 2N+K symbols

1 1 0 N+K-bit

Prefix

s

All 2N+K symbols

1 1 1 N+K-bit

Prefix

other
letters

2K symbols of P(N,K)

Figure 2: Data-aware alphabet letter codings.

complexity is in the order Ω(2𝐾). To do each decoding,
the code words can be placed in a binary tree with a depth
𝐾+𝑁 . Searching for a symbol on this tree has an Ω(𝐾+𝑁)
complexity. Thus, both our coding and decoding operations
have a very low overhead.

6. EVALUATION RESULTS
We evaluate our energy-aware encoding methods on a va-

riety of benchmark data sets. We perform our evaluations
for different relative set and reset energy ratios 𝐸𝑅

𝐸𝑆
and dis-

cuss their impact on the energy efficiency. To have a fair
comparison, we normalize the costs such that 𝐸𝑅 +𝐸𝑆 = 1.

6.1 DP-based Algorithm
We analyze DP-based encoding method provided in Algo-

rithm 1 for different word lengths. We compare the average
energy costs obtained from this method to that of the no-
coding (nc) method and the optimal bound (opt) from Sec-
tion 4.3. The no-coding method is equivalent to the problem
𝒫(𝑁, 0). We denote the average overwrite energy costs for
the words for the above three methods as follows; 𝒞𝑛𝑐(𝑁, 0),
𝒞𝑑𝑝(𝑁,𝐾) and 𝒞𝑜𝑝𝑡(𝑁,𝐾).

Table 6.1, shows the results for the case where 𝐸𝑅
𝐸𝑆

= 2

for different word lengths 𝑁 and number of extra-bits 𝐾.
Columns six shows the average improvement in the cost ob-
tained from the DP compared to no-coding method. The
result shows notable savings. For example, for 𝑁 = 8 and
𝐾 = 2, energy cost is reduced by 72%. Thus, for each word
overwrite, we save on average 28% of the energy at the ex-
pense of adding 2 bits. The last column shows the DP per-
formance compared to the optimal achievable bounds. Our
results show that DP algorithm achieves values very close
(in some cases equal) to the optimal bound.

Table 1: DP cost (𝒞𝑑𝑝) comparison against no-coding
cost (𝒞𝑛𝑐) and optimal cost (𝒞𝑜𝑝𝑡).

N 𝒞𝑛𝑐(𝑁, 0) 𝐾 𝒞𝑜𝑝𝑡 𝒞𝑑𝑝
𝒞𝑑𝑝(𝑁,𝐾)

𝒞𝑛𝑐(𝑁,0)

𝒞𝑜𝑝𝑡

𝒞𝑑𝑝

2 .5 1 .37 .37 .75 1
3 .75 1 .55 .55 .73 1
4 1 1 .75 .75 .75 1
4 1 2 .68 .72 .72 .94
8 2 1 1.48 1.48 .74 1
8 2 2 1.42 1.44 .72 .98
8 2 3 1.34 1.39 .69 .96
8 2 4 1.30 1.36 .68 .95

Figure 3 shows the average energy cost 𝒞(𝑁,𝐾) for differ-

ent 𝐸𝑅
𝐸𝑆

values; 𝑁 is set to 10 and 𝐾 is in the range 1,2,. . . ,5.

We see that as the ratio 𝐸𝑅
𝐸𝑆

increases, better energy savings

are achieved. This is because our coding scheme aims to op-
timize the energy consumption by minimizing the number
of overwrites. Since resets have a higher energy cost, the
minimization impact will be higher for them.

1 1.5 2 2.5 3 3.5 4 4.5 5
1.65

1.7

1.75

1.8

1.85

1.9

1.95

2

2.05

2.1

Number of extra bits used for coding (K)

A
ve

ra
ge

 e
ne

rg
y

co
st

Average energy cost of overwrites for N=10 and variable K

E

R
=E

S

E
R

=2E
S

E
R

=3E
S

E
R

=4E
S

Figure 3: Cost reduction by data-aware coding.

6.2 Performance on Audio and Image Data
We use the encoding method to store audio and image

data on PCM. Our benchmark data are from Columbia Uni-
versity audio and Caltech Vision image databases, [1, 6].
The audio data are 𝑚𝑠𝑚𝑛1.𝑤𝑎𝑣, 𝑚𝑠𝑚𝑣1.𝑤𝑎𝑣, 𝑚𝑠𝑠𝑝1.𝑤𝑎𝑣,
and 𝑚𝑠𝑚𝑠1.𝑤𝑎𝑣. The image files are 𝑑𝑐𝑝 − 2897.𝑗𝑝𝑔,
𝑑𝑐𝑝 − 2898.𝑗𝑝𝑔, 𝑑𝑐𝑝 − 2899.𝑗𝑝𝑔 and 𝑑𝑐𝑝 − 2830.𝑗𝑝𝑔. Figure
4 shows the average energy reductions for all file overwrites.
More details are outlined in Appendix D.

For audio data, 𝒫(4, 1) and 𝒫(4, 2) encodings are applied
and the results show an energy reduction of 11% and 21%
respectively. For image data, 𝒫(8, 1) and 𝒫(8, 2) encodings
are applied and the results demonstrate an average energy
reduction by 18% and 28% respectively. The savings are
significant and confirm the notable energy improvements of
encoding at the expense of adding a few extra bits.

0

0.5

1

1.5

2

2.5

nc P(4,1) P(4,2) nc P(8,1) P(8,2)

Average energy cost per word

Audio data

Image data

Figure 4: Average energy cost per word, 𝐸𝑅
𝐸𝑆

= 2.

6.3 Distribution-Aware Data Coding
We first evaluate English alphabet coding as described in

Section 5.2. Then, we provide coding and evaluations for

72

the ASCII characters. We used two text benchmarks, the
31 MB 𝑡𝑒𝑥𝑡8.𝑡𝑥𝑡 file from [2], for alphabet evaluations; and
the 4.8 MB 𝐾𝐽𝑉.𝑡𝑥𝑡 file from [4] for ASCII evaluations.

6.3.1 Alphabet Letters
We encoded the alphabet letters with the distribution-

aware encoding. Since there are 26 alphabet letters, 𝑁 = 5;
we set 𝐾 = 1, and Prefix=3. The codes are of length Prefix-
length+𝑁 +𝐾 = 9. We evaluated the method on 𝑇𝑒𝑥𝑡8.𝑡𝑥𝑡
data for different test trials. For each trial, we created 100
pairs of vectors by randomly reading the data from the text
file. Each vector has 1000 letters. We overwrote the vec-
tors of each pair and computed the average overwrite cost
for 𝐸𝑅

𝐸𝑆
= 2. The results demonstrate an average 44.1% re-

duction when compared to the no-coding scheme and 9.3%
reduction compared to the uniform coding 𝒫(5, 2).

6.3.2 ASCII Characters
According to the frequencies of ASCII characters from [3],

59% of all the possible rewrites are to/by one of the first 15
most frequent characters. Thus, we optimize our coding for
these characters by assigning separate prefixes to them.

The first 15 most frequent characters are: space, 𝑒, 𝑡, 𝑎,
𝑜, 𝑖, 𝑛, 𝑠, ℎ, 𝑟, 𝑑, 𝑙, 𝑢, 𝑚, 𝑐. We assigned the following 4-it
prefixes to them respectively: (0000), (0001), (0010), (0100),
(1000), (1001), (1010), (0110), (0111), (1011), (1101). The
prefix for all the other characters is (1111). Since there are
27 ASCII characters, 𝑁 = 7 and we set 𝐾 = 1. Thus, the
codes will be of length 4 + 𝑁 + 𝐾 = 12. The encoding
method is the same as described for alphabet letters.

We evaluated the ASCII coding scheme on the 𝐾𝐽𝑉.𝑡𝑥𝑡
file. We created 100 pairs of vectors, each of length 1000
from the file. The first vector in each pair was overwritten
by the second vector. We considered 𝐸𝑅

𝐸𝑆
= 2. To compare

this method with the uniform coding, we encoded the ASCII
characters with the codes from 𝒫(7, 1), 𝒫(7, 2) and 𝒫(7, 3)
and report the corresponding average costs in the following:

Encoding Data-aware 𝒫(7, 1) 𝒫(7, 2) 𝒫(7, 3)
Avg cost 1.24 1.42 1.37 1.34

We see that the ASCII data-aware coding, on average,
reduces the energy cost to 92% of the best cost achieved
from 𝒫(7, 3). Thus, for overwriting each ASCII character,
there will be an 8% reduction in the energy cost compared
to the results of the uniform encoding. This improvement is
at the expense of two extra bits per character.

7. CONCLUSION
We proposed a novel data coding methodology for mini-

mizing PCM write energy. Our approach creates several al-
ternative symbols for each word being written in the mem-
ory, trading off energy efficiency with encoding overhead.
The new word that is going to be written on the memory is
encoded by the symbol with minimum distance to the ex-
isting word on that memory location. To address the prob-
lem, we developed (i) an ILP-based solution that mostly
incurs a high combinational complexity; and (ii) a Dynamic
Programming-based approach that combined the smaller op-
timal codewords. For cases where the distributions of the
letters in the alphabet were a priori known, we created a
new data-aware algorithm that incorporated those informa-
tion for further energy reductions. Evaluations on a diverse

set of text, image, and audio benchmark data demonstrated
the applicability and effectiveness of our new methods.

7.1 Acknowledgments
This research is in part supported by ONR YIP award

under grant No. R16480, ARO YIP award under grant No.
R17450 and NSF CCF-0926127 award.

8. REFERENCES
[1] http://labrosa.ee.columbia.edu/sounds/.

[2] http://mattmahoney.net/dc/textdata/.

[3] http://millikeys.sourceforge.net/freqanalysis.html.

[4] http://patriot.net/ bmcgin/kjvpage.html.

[5] http://www.gurobi.com/.

[6] http://www.vision.caltech.edu/html-files/archive.

[7] R. Ahlswede and Z. Zhang. Coding for write-efficient
memory. Info and Comp., 83(1):80–97, 1989.

[8] J. Anxiao, M. Langberg, M. Schwartz, and J. Bruck.
Universal rewriting in constrained memories. In ISIT,
pages 1219–1223, 2009.

[9] S. Cho and H. Lee. Flip-N-Write: a simple
deterministic technique to improve PRAM write
performance, energy and endurance. In MICRO, pages
347–357, 2009.

[10] G. Dhiman, R. Ayoub, and T. Rosing. PDRAM: A
hybrid PRAM and DRAM main memory system. In
DAC, pages 664 –669, 2009.

[11] T. F. and Gonzalez. Clustering to minimize the
maximum intercluster distance. Theoretical Computer
Science, 38(0):293–306, 1985.

[12] F. Fu and R. Yeung. On the capacity and
error-correcting codes of write-efficient memories.
IEEE Tran. on IT, 46(7):2299 –2314, 2000.

[13] S. Lai. Current status of the phase change memory
and its future. In IEDM, pages 10.1.1 – 10.1.4, 2003.

[14] B. Lee, E. Ipek, O. Mutlu, and D. Burger.
Architecting phase change memory as a scalable dram
alternative. In ISCA, pages 2–13, 2009.

[15] T. Mittelholzer, L. Lastras-Montañ Ando, M. Sharma,
and M. Franceschini. Rewritable storage channels with
limited number of rewrite iterations. In ISIT, pages
973 –977, 2010.

[16] M. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan,
L. Lastras, and B. Abali. Enhancing lifetime and
security of PCM-based main memory with start-gap
wear leveling. In MICRO, pages 14–23, 2009.

[17] R. Rivest and A. Shamir. How to reuse a write-once
memory. In STOC, pages 105–113, 1982.

[18] S. Schechter, G. Loh, K. Straus, and D. Burger. Use
ECP, not ECC, for hard failures in resistive
memories. In ISCA, pages 141–152, 2010.

[19] H. Wong, S. Raoux, S. Kim, J. Liang, J. Reifenberg,
B. Rajendran, M. Asheghi, and K. Goodson. Phase
change memory. Proceedings of the IEEE,
98(12):2201–2227, 2010.

[20] Y. Wu and A. Jiang. Position modulation code for
rewriting write-once memories. IEEE Tran. IT,
57(6):3692–3697, 2011.

[21] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable
and energy efficient main memory using phase change
memory technology. In ISCA, pages 14–23, 2009.

73

APPENDIX

A. PCM OPERATION AND ENERGY
MODEL

A key challenge for non-volatile memory technology, in
particular flash, is the high energy cost of writes [19]. The
speed of writing and reading from the caches and from the
DRAM is often high, and therefore, the number of transi-
tions is higher than the external memories. Therefore, since
resistive memory is suggested for replacing and complement-
ing various storage units in the memory hierarchy, saving the
energy cost of set and reset transitions is of a high value [19,
16].

Programmable
region

Metal

Chalcogenide

Metal

Heating element

Te
m

pe
ra

tu
re

Time

Reset pulse

Set pulse

Read pulse

(a) (b)

Figure 5: (a) A PCM memory cell; (b) Current
pulses for set, reset, and read operations.

As shown in Figure 5(a), the phase change media is placed
between an electrode layer and a layer composed of a heater.
The current flows through the phase change material from
the electrode to the heater. This current is provided as a
pulse, and its duration and amplitude controls the temper-
ature needed for the set and reset operations. Heating the
phase change material above a crystallization temperature
by applying an average current but wide duration pulse re-
sults in the set operation. A very high current (melt quench-
ing) pulse with a short duration resets the device to its
amorphous state. The read is done by applying a very low
amplitude and low power pulse that senses the device resis-
tance. The shape of the three pulses used for set, reset, and
read commands is plotted in Figure 5(b), [19]. The energy
discrepancy between the PCM set and reset operations has
been experimentally shown.

B. A WORD ENCODING/DECODING EX-
AMPLE

In this example, we describe how one may benefit from
coding the PCM data. Here we are solving the problem of
finding the optimal coding for 2-bit words with 3-bit codes.
We denote the words by 𝑊1=(00), 𝑊2=(01), 𝑊3=(10),
𝑊4=(11) and denote the codes corresponding to the word
𝑊𝑖 by 𝑍𝑖1 and 𝑍𝑖2, for 1 ≤ 𝑖 ≤ 4; since 𝐾=1 each word
has 2𝐾=1=2 code representation. The key point is to ex-
ploit multiple representations of each word for minimizing
the write energy. For instance, if the existing data is 𝑍11

and 𝑊2 is to be written on it, among its representations 𝑍21

and 𝑍22, the one that incurs the minimum energy cost to
overwrite 𝑍11 (which in this case is 𝑍21) is selected.

Figure 6 shows a graph representation of the encodings for
the 2-bit words shown in separate clusters. The vertices of
the graph are the codes and each cluster represents a word.

Z11 Z12

Z31 Z32

W1

W3

Z21

Z22

W2

Z41

Z42

W4

Z11= 000

Z12= 111

Z21= 001

Z22= 110

Z31= 010

Z32= 101

Z41= 100

Z42= 011

Optimal codes

ES=ER

Figure 6: A 3-bit encoding for the 4 words 𝑊1, 𝑊2,
𝑊3, and 𝑊4.

The graph is a directed graph and the weight of each edge
shows the cost of overwriting one node with the other. The
optimal encoding is derived and provided on the figure. If
the code 𝑍22 is to be overwritten by a code of 𝑊3, 𝑍31 is
selected because its energy cost is only equal to 𝐸𝑆 . If no
coding was used, overwriting 𝑊2 with 𝑊3 would cost the
higher value of 𝐸𝑅+𝐸𝑆 . Another example is a cycle of word
overwrites (𝑊1,𝑊2,𝑊3,𝑊4,𝑊1). Assume that 𝑊1 is coded
as 𝑍11. Then, the minimum cost codes would be selected as
follows (𝑍11,𝑍21,𝑍32,𝑍41,𝑍11). The cost associated with the
code overwrites is 𝐸𝑆 +𝐸𝑆 +𝐸𝑆 +𝐸𝑅 +𝐸𝑅 = 2.𝐸𝑆 + 2.𝐸𝑅.
Whereas the cost for overwriting the codes without coding
is 𝐸𝑆 + (𝐸𝑆 + 𝐸𝑅) + 𝐸𝑆 + (2𝐸𝑅) = 3.𝐸𝑆 + 3.𝐸𝑅.

An example of a binary tree for decoding the data with 8
code words (𝑁 +𝐾=3) for the codes developed in Figure 6
is shown in Figure 7.

0

01

0101

1

01

0101

Start

Z11Z21Z31Z42Z41Z32Z22Z12

Figure 7: Binary tree for encoding.

C. INTEGER LINEAR PROGRAMMING
FORMULATION

To formulate OF in a linear form, we define an index vari-
able that for each symbol, keeps track of the index of the
element (in each of the other clusters) with the minimum
distance to the symbol. The following set of variables were
used in our ILP formulation:

74

𝑙, 𝑙′ Words indices 𝑊𝑙 or 𝑊 ′
𝑙 for 1 ≤ 𝑙, 𝑙′ ≤ 2𝑁 .

𝑖, 𝑖′ Code indices within each cluster, 1 ≤ 𝑖, 𝑖′ ≤ 2𝐾 .
𝑍𝑙𝑖 The i-𝑡ℎ code ∈ 𝑊𝑙 for all 𝑖.
Φ𝑙𝑙′𝑖 𝜙(𝑍𝑙′𝑖,𝑊𝑙) for all 𝑙, 𝑙′, 𝑖 and 𝑖′.
𝑤𝑙𝑙′𝑖𝑖′ 𝑤(𝑍𝑙𝑖, 𝑍𝑙′𝑖′) for all 𝑙, 𝑙′, 𝑖 and 𝑖′.
Δ𝑙𝑙′𝑖𝑖′ 𝑤𝑙𝑙′𝑖𝑖′ − Φ𝑙𝑙′𝑖 for all 𝑙, 𝑙′, 𝑖 and 𝑖′.
𝑋𝑙𝑖𝑗 j-𝑡ℎ significant bit of 𝑍𝑙𝑖 for 1 ≤ 𝑗 ≤ (𝑁 +𝐾).
𝐹𝑙𝑙′𝑖𝑖′𝑗 𝑤(𝑋𝑙𝑖𝑗 , 𝑋𝑙′𝑖′𝑗) for all 𝑙, 𝑙′, 𝑖, 𝑖′ and 𝑗.
𝐼𝑑𝑙𝑙′𝑖𝑖′ An indicator binary; =0 iff Δ𝑙𝑙′𝑖𝑖′ = 0

for all 𝑙, 𝑙′, 𝑖 and 𝑖′.
The codes representing a word 𝑊𝑙 are shown by 𝑍𝑙𝑖;

Φ𝑙𝑙′𝑖 denotes the cost of overwriting 𝑍𝑙𝑖 by a code in 𝑊𝑙′
that requires the minimum overwrite energy; 𝑤𝑙𝑙′𝑖𝑖′ is the
cost of overwriting two codes 𝑈𝑙𝑖 and 𝑈𝑙′𝑖′ . Thus, Φ𝑙𝑙′𝑖 =
min𝑖′ 𝑤𝑙𝑙′𝑖𝑖′ . Each code 𝑍𝑙𝑖 consists of 𝑁+𝐾 bits and can be
written as (𝑋𝑙𝑖𝑁+𝐾 , . . . , 𝑋𝑙𝑖2, 𝑋𝑙𝑖1). The parameter 𝐹𝑙𝑙′𝑖𝑖′𝑗
is defined to be the cost of overwriting 𝑋𝑙𝑖𝑗 with 𝑋𝑙′𝑖′𝑗 and
its range of values is shown in the table below. Variable
𝐼𝑑𝑙𝑙′𝑖𝑖′ is an indicator binary variable that indicates if the
closest code to 𝑍𝑖𝑙 in cluster 𝑙′ is 𝑍𝑖′𝑙′ or not.

𝑋𝑙𝑖𝑗 𝑋𝑙′𝑖′𝑗 𝐹𝑙𝑙′𝑖𝑖′𝑗
0 0 0
0 1 𝐸𝑆

1 0 𝐸𝑅

1 1 0

Using the above variables, we define our OF and provide
constraints to our problem in a way that conforms to the
ILP format. Our OF, as written in Equation 3, minimizes
the average cost of overwriting the codes for all possible
overwrites:

𝑂𝐹 : min
1

2𝑁 .2𝑁 .2𝐾

∑
Φ𝑙′𝑙𝑖 for all 𝑙′, 𝑙 and 𝑖 variables

(6)
The following constraints define Φ𝑙𝑙′𝑖:
C1. Δ𝑙𝑙′𝑖 ≥ 0 for all 𝑙, 𝑙′ and 𝑖 variables,
C2. Σ𝑖′∈1,...,2𝑘𝐼𝑑𝑙𝑙′𝑖𝑖′ ≤ 2𝐾 − 1,
C3. 𝐼𝑑𝑙𝑙′𝑖𝑖′ ≤ Δ𝑙𝑙′𝑖𝑖′ ,
C4. 𝐸𝑅.(𝑁 +𝐾).𝐼𝑑𝑙𝑙′𝑖𝑖′ ≥ Δ𝑙𝑙′𝑖𝑖′ .

Constraints C1 and C2 set Φ𝑙𝑙′𝑖 not greater than each
distance Δ𝑙𝑙′𝑖 and equal to at least one of them respectively;
Constraints C3 and C4 define the indicator variable based
on the fact that 𝐸𝑅.(𝑁 +𝐾) is always grater than Δ𝑙𝑙′𝑖𝑖′ .

The following linear constraints set 𝐹𝑙𝑙′𝑖𝑖′𝑗 as defined in the
table above:
C5. 1

𝐸𝑅+𝐸𝑆
𝐹𝑙𝑙′𝑖𝑖′𝑗 +𝑋𝑙𝑖𝑗 +𝑋𝑙′𝑖′𝑗 ≤ 2,

C7. 𝐹𝑙𝑙′𝑖𝑖′𝑗 − 𝐸𝑅.𝑋𝑙𝑖𝑗 − 𝐸𝑆 .𝑋𝑙′𝑖′𝑗 ≤ 0,
C8. 𝐹𝑙𝑙′𝑖𝑖′𝑗 − 𝐸𝑅.𝑋𝑙𝑖𝑗 − 𝐸𝑅.𝑋𝑙′𝑖′𝑗 ≥ 0,
C9. 𝐹𝑙𝑙′𝑖𝑖′𝑗 − 𝐸𝑆 .𝑋𝑙𝑖𝑗 − 𝐸𝑆 .𝑋𝑙′𝑖′𝑗 ≥ 0.

The following constraint defines distance 𝑤𝑙𝑙′𝑖𝑖′ :
C10. 𝑤𝑙𝑙′𝑖𝑖′ = Σ1≤𝑗≤𝑁+𝐾𝐹𝑙𝑙′𝑖𝑖′𝑗 .

The following constraint is set to ensure that no code is
assigned to more than one word; 𝐸𝑆 is the minimum cost of
overwriting two different codes:
C11. 𝑤𝑙𝑙′𝑖𝑖′ ≥ 𝐸𝑆 .

The output of the above ILP is the values of 𝑋𝑙𝑖𝑗 that
constructs the codes 𝑈𝑖𝑙. The above constraints are all in
linear format and can be readily implemented by any ILP
solver. The complexity and runtime for solving the instances

of the ILP for our NP-complete problem exponentially in-
creases with the instance size. In our experiments, we have
been able to find the optimal solution by using a limited
version of an ILP solver licensed to one user for 𝑁 and 𝐾
(𝑁 = 2, 3, 4, 𝐾 = 1, 2). If one has access to the commercial
ILP solvers that run on supercomputers, it is likely possible
to find the optimal codes for the practical codes of longer
sizes. The longer runtimes can be tolerated since the ILP
needs to be used only once and offline (See Section 5.3).

C.1 ILP Results
We used the latest version of Gurobi ILP solver, Gurobi

4.5.2, to solve the ILP defined in Section C, [5]. Gurobi
provides free access for academic purposes. The runtime of
the solver for solving 𝒫(4, 2) is about 30 hours on an Intel
Core 2 Duo Processor T9600 computer. Thus, due to the
time constraint we were not able to solve the OF for larger
problems. However, the authors make the python ILP code
available to the interested readers.

D. RESULTS

D.1 Audio and Image Data
We provide more details of the encoding evaluations on

audio and image data as described in Section 6.2. The
audio data were msmn1.wav, msmv1.wav, mssp1.wav, and
msms1.wav and are denoted by 𝑎1, 𝑎2, 𝑎3 and 𝑎4 in Table
D.1. The image files are 𝑑𝑐𝑝−2897.𝑗𝑝𝑔, 𝑑𝑐𝑝−2898.𝑗𝑝𝑔, and
𝑑𝑐𝑝− 2899.𝑗𝑝𝑔 and 𝑑𝑐𝑝− 2830.𝑗𝑝𝑔 and are presented by 𝑖1,
𝑖2, 𝑖3 and 𝑖4 in Table D.1.

Table 2: Average energy costs of DP and no-coding
methods for audio data.

Energy nc dp dp
costs 𝒫(4, 0) 𝒫(4, 1) 𝒫(4, 2)
𝑎1 → 𝑎2 0.59 0.50 0.43
𝑎1 → 𝑎3 0.66 0.54 0.50
𝑎1 → 𝑎4 0.66 0.62 0.60
𝑎2 → 𝑎3 0.61 0.48 0.39
𝑎2 → 𝑎4 0.59 0.67 0.58
𝑎3 → 𝑎4 0.71 0.60 0.54

Table 3: Average energy costs of DP and no-coding
methods for image data.

Energy nc dp dp
costs 𝒫(8, 0) 𝒫(8, 1) 𝒫(8, 2)
𝑖1 → 𝑖2 2.20 1.78 1.61
𝑖1 → 𝑖3 2.44 1.66 1.44
𝑖1 → 𝑖4 1.90 1.70 1.58
𝑖2 → 𝑖3 1.66 1.73 1.46
𝑖2 → 𝑖4 1.79 1.38 1.22
𝑖3 → 𝑖4 1.75 1.46 1.19

In both tables, the first column shows the files that are
overwritten. For example 𝑎1 → 𝑎2 means that 𝑎2 is over-
written by 𝑎1. The second and third column show the av-
erage overwrite costs for the DP-based algorithm (Data is

75

encoded) and the no-coding method for 𝒫(4, 1) (audio data)
and 𝒫(8, 1) (image) data encodings. For example, the aver-
age cost of a word overwrite in 𝑎1 → 𝑎2 is 0.50 in DP, while
this value is 0.59 in the no-coding method while encodings
from 𝒫(4, 1) is applied. The forth and fifth columns show
the same results for 𝒫(4, 2) (audio data) and 𝒫(8, 2) (image)

data encodings. All results correspond to 𝐸𝑅
𝐸𝑆

= 2. Meaning-

ful improvements are achieved by the energy-minimization
coding method. The energy cost on average is reduced by
our 15.6% and 22.5% for audio and image data respectively.

76

