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Abstract—We develop Chime, a set of mechanisms and methodologies that enable long-running computations on low power IoT
devices with scarce and intermittent energy sources. We address the power transiency and unpredictability problem by optimally
inserting checkpoints that save the intermediate states. Chime automatically locates and embeds checkpoints at the register-transfer
level. We define an objective function that aims to find low-overhead checkpoints which minimize the recomputation energy cost. We
develop and exploit a dynamic programming technique to solve the optimization problem. For real time operation, Chime adaptively
adjusts the checkpointing rate based on the available energy level in the system. Chime is deployed and evaluated on algebraic, data
transformation, and cryptographic benchmark circuits. For storage of checkpoint data, we evaluate and compare the effectiveness of
various non-volatile memories including NAND Flash, PCM, and STTM. Extensive evaluations show that Chime reliably enables
execution of long computations under different source power patterns with low overhead. Our benchmark evaluations demonstrate that
the area and energy overheads corresponding to the checkpoints are less than 9% and 11% respectively.
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1 INTRODUCTION

R ECENT years have witnessed an unprecedented growth
in applications that demand autonomous energy sup-

plies for reliable operation. Prominent and highly in-
demand examples of devices that benefit from autonomous
energy supplies are Internet of Things (IoT) entities includ-
ing medical implants and sensors used in military, teleme-
try, smart building, and other remote sensing applications.
The bounded capacity and rechargeability of conventional
batteries make them unsuitable for scenarios where their
replacement is very costly or even infeasible. Energy har-
vesting devices are promising alternatives for batteries, as
they enable self-sustained and durable energy sources.

While energy harvesting sources enjoy a seemingly un-
limited supply of energy, their applicability becomes limited
due to at least three sets of challenges. The first challenge
arises from the non-continuous behavior of the harvested
power. Short and intermittent availability of harvested en-
ergy prohibits long computations that require power avail-
ability for a contiguous block of time. The second challenge
is the unpredictability of the input energy, which makes
the system unreliable. The third challenge is related to the
limited size of the energy storage units in many (ultra)low
power applications. In this case, even when the energy
storage device is fully charged, it might be insufficient to
sustain a given task. Devising methods to address these
challenges is vital for broadening the applications of energy
harvesting devices.

In this paper, we propose Chime, a set of automated
energy optimization methodologies and supported system
designs for enabling long computations on low power IoT
entities with intermittent energy sources. Our key idea
is to insert efficient energy-aware checkpoints that enable
gradual progress in computations by storing the current
state of the process and retrieving it later when more energy
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becomes available. Chime optimally locates low-overhead
checkpoints that significantly reduce recomputation cost in
systems with frequent power losses. Our approach enables
running complex computations on IoT devices in scenarios
where the on-chip energy storage capacity, even if com-
pletely full, is insufficient to supply the entire workload.

Our solutions target Application-Specific Integrated Cir-
cuits (ASICs). Customized hardware designs are known to
be orders of magnitudes more energy and area efficient than
general-purpose processors. This property makes ASIC an
attractive solution for low-power and small-scale energy
harvesting applications such as IoT. Despite the higher
engineering and manufacturing cost, mass production justi-
fies designing ASIC solutions. Moreover, advances in High
Level Synthesis (HLS) tools promises significant reductions
in design cost and complexity [1].

To find the proper locations for inserting the checkpoints,
we use the design’s Control Data Flow Graph (CDFG).
CDFG is an intermediate representation of the design that
is generated while translating the high-level behavioral
specifications of the system to the Hardware Description
Language (HDL). Using the CDFG, we provide two opti-
mizations methodologies to optimally find the checkpoints
that incur minimum storage and recomputing energy over-
heads. The first one is tailored for input-independent CD-
FGs, whereas the second one is suited for general input-
dependent CDFGs. We map the optimal checkpoint place-
ment problem to a cost minimization objective and solve
it with an efficient algorithm based on dynamic program-
ming. We devise mechanisms that embed the Checkpointing
Circuits (thereafter denoted by CPCs) within the high-level
functional description. We also propose efficient techniques
that adaptively sense the available energy and activate the
checkpoints based on power consumption estimations.

Many fabricated integrated circuits (ICs) are equipped
with a Joint Test Action Group (JTAG) port for post fab-
rication testing and debugging [2]. JTAG is used as the
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primary means of accessing subparts of many such ICs.
An important property of JTAG is that it enables data
transfer into internal Non-Volatile Memory (NVM) of the
device. We present a novel approach that can take advantage
of pre-existing JTAG circuitry in an IC for checkpointing,
eliminating the need to modify the IoT device during design
time.

The checkpointed data has to be stored on non-volatile
memory repeatedly. Thus, choosing an efficient and fast
memory is important. We explore the performance of differ-
ent state-of-the-art and emerging NVMs including NAND-
flash memory, Phase-Change Memory (PCM), and Spin-
Transfer-Torque Memory (STTM).

We demonstrate the low energy overhead of Chime’s
checkpointing techniques. In some scenarios, however, the
power requirement for writing data to NVM can be several
times higher than that of the computation itself. Thus, the
lower power energy source designed for the IoT device
might be unable to efficiently perform checkpointing. To
mitigate this challenge, we propose an efficient and cus-
tomized energy supply management module for the check-
pointing circuit. Our design benefits from heterogeneous ca-
pacitors that enable buffering and transferring the required
electric charge from the source to the checkpointing circuit
while reducing the leakage power.

Different checkpointing methods have been developed
for software processors, which operate at the compiler level
[3], [4], [5], [6]. Software methods cannot be directly applied
to ASICs due to the fundamental implementation differ-
ences. High-level synthesis checkpointing methods have
been developed for hardware designs to address the fault-
tolerance problem [7], [8]. However, the existing methods
target a different objective and set of constraints that make
them inapplicable to our problem. For example, a design
parameter in the available literature for fault tolerant check-
pointing uses a limited shared register file to store the check-
points. Such fault-tolerant methods are not applicable to our
problem since the intermittent power losses erase the regis-
ter contents. Our method thus addresses a fundamentally
different objective, as we use NVM for data storage during
power outages and recovery. Our main focus is on tolerating
power failures. Additionally, we exploit state-of-the-art HLS
tools that enable developing complex applications.

To motivate and test our approach, we deploy our tech-
niques on an RFID platform running various algebraic, data
transformation, and cryptographic algorithms. As RFIDs be-
come more and more pervasive, there is an ever-increasing
demand for securing their underlying applications. Due to
power source variation and intermittency, running com-
putationally complex algorithms on RFID devices is very
challenging. Our techniques enable the execution of such al-
gorithms with minimal constraints on supply energy avail-
ability. Our contributions are as follows:

• We propose Chime, novel checkpointing methodolo-
gies that enable running long computations on IoT
devices with intermittent energy sources. Our ap-
proach finds optimal checkpoint locations that incur
the lowest energy and recomputation overhead.

• We design a highly efficient electric charge buffering
and transfer module that supports the high power

demand of the checkpointing circuit.
• We develop the supporting tools for automatic in-

sertion of the checkpointing circuits to design’s HDL
file. We also propose methods for enabling check-
pointing using the existing JTAG circuitry available
in many ICs.

• We explore the effect of memory in checkpointing ap-
plications by comparing the performance of different
state-of-the-art and emerging NVM technologies.

• We show the applicability and effectiveness of our
checkpointing methods by applying them to various
benchmark circuits for algebraic, data transforma-
tion, and cryptographic applications. Our experi-
ments verify that Chime incurs very low energy,
time, and area overhead and can efficiently support
various power trace patterns.

Our earlier results have appeared in the [9], [10]. In
this paper, we extend our contributions by (i) proposing a
novel energy supply module for CPC. This module enables
Chime to efficiently perform charge buffering to support
the high power demand of the checkpointing circuit; (ii)
devising low-overhead methods for checkpointing using the
existing JTAG circuitry available in many ICs for testing
and debugging purposes. Taking advantage of pre-existing
JTAG for checkpointing purpose, eliminates the need to
modify the IoT device during design time; (iii) perform-
ing various experimental evaluations to compare Chime’s
input-dependent and input-independent optimization ap-
proaches.

2 RELATED WORK

Computing on batteryless energy harvesting systems has
found application in many fields such as cryptography,
wireless sensor networks and habitant monitoring systems
[11], [12]. A number of platforms that empower batteryless
computational devices have been developed. The WISP is a
platform that harvests RF energy from RFID-readers to sup-
ply its processing unit (TI-MSP430) [13]. Following WISP,
several other platforms have been proposed that offer better
performance in RF harvesting, storage, and peripherals;
examples of which are EnHANTs [14] and UMass Moo [15].

The high energy efficiency of ultra-low power ASICs
makes them a natural fit for systems with energy harvesting
sources [16]. There are emerging applications of such sys-
tems in distributed sensor networks and medical devices.
For example, Chen et al. recently developed an intraocular
pressure (IOP) sensor for eye pressure monitoring [17].
The sensor is placed inside the eye and achieves energy
autonomy by harvesting solar energy through a solar cell
with average power consumption of less than 10nW. It
is believed that technology scaling to sub-20nm and sub-
threshold designs open doors for an upcoming class of ultra-
low power devices powered by harvesting sources [18].

Checkpointing methods have been proposed for ad-
dressing the intermittent-energy problem at the compiler
level. A number of techniques suggest saving all the avail-
able data at each checkpoint. Those methods are easy to
implement but are shown to be less efficient due to the large
overhead of the checkpoints [19]. Earlier work have also
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proposed voltage scaling techniques along with checkpoint-
ing to meet the deadlines imposed by limited power [5],
[20]. Those methods are inapplicable to our problem, since
we target ultra-low power devices that operate at a single
voltage. For single-voltage devices, a number of program-
partitioning techniques for handling power variations have
been developed [3], [21]. For example, Mementos [3] pro-
poses an automated method for computing on transient RF
power on a TI-MSP430 microcontroller. It inserts the check-
points at the end of the loops and function-calls during the
compile time. It also uses a timer interrupt that periodically
measures the source voltage and activates the checkpoint if
necessary.

Software methods insert the checkpoints at the compiler
level. However, hardware checkpointing requires CDFG or
lower level descriptions. For example, a variable in high-
level code is not necessarily a single register in HDL. Our
method also takes into account parallelism/pipelining tech-
niques in hardware while placing the checkpoints. However,
software methods such as Mementos do not have access to
such low level information during the compile time.

A suite of prior work has developed high-level synthesis
checkpointing and rollback recovery algorithms to address
the fault-tolerance problem in ASICs [7], [22]. The goal has
been to insert the checkpoints to minimize either the corre-
sponding hardware overhead for a given execution time, or
to minimize the execution time for a limited hardware. The
hardware constraint is imposed by a shared register file that
is used to store temporary variables. The algorithms ensure
that at the time of checkpointing enough empty registers
are available. Such methods are not resilient to power loss
as the register content would be lost. Since Chime uses a
separate NVM for checkpointing purposes, we do not have
the shared register file constraint. Methods that combine
checkpointing and replication techniques (redoing tasks) to
achieve fault-tolerance have also been proposed [8]. How-
ever, our objective is to avoid replication; our assumption
is that the source power is scarce and the device’s energy
consumption outpaces the harvested energy.

Another line of work focuses on addressing the limi-
tations of the energy harvesting powered IoTs via the the
concept of Non-Volatile Processors (NVP) [23], [24]. An NVP
implements a set of distributed non-volatile flip-flops for
backing up regular register contents. In theory, an NVP can
backup the data in every flip-flop in parallel so it has the
potential to reduce the sleep and wake-up time dramatically.
We emphasize that Chime targets the broad and increasingly
popular HLS based ASIC designs, while NVP designs are
currently limited and not yet commercially widespread.
However, future directions can explore a hybrid design
that integrates the proposed optimization methodologies in
Chime and the fast data saving and wake-up time in NVPs
for more efficient checkpointing circuits. The NVPs can also
benefit from the Chime checkpointing strategies in order to
reduce the number of non-volatile flip-flops used for saving
the state of data.

NVPs have motivated the inception of storage-less and
converter-less energy harvesting systems that directly sup-
ply the harvested energy to pertinent IoT devices [25], [26].
For realizing this technique, the power management unit
circuit enables a fine-grained control of the photovoltaic

cell voltage, which leads to better maximum power point
tracking performance and higher energy efficiency. This
subsequently results in notable improvement in energy
collection and operation time of the device. We note that
the IoT devices equipped with the above energy harvesting
units can well integrate the systematic and optimized check-
pointing methodologies proposed in the Chime framework.

In an earlier work, we have proposed Idetic, a hardware-
based checkpointing framework for intermittently powered
systems [9]. Our work includes a set of optimization algo-
rithms to locate the checkpoints with the goal of minimizing
the cost of storing and retrieving data. The framework
targets specific applications where the flow of data within
the CDFG is predictable and input-independent. Based on
that assumption and during the design time, the application
is run for an arbitrary input and the resulting Finite State
Machine (FSM) is unrolled to find the checkpoints. Those
methods are not applicable for input-dependent applica-
tions where each input signal result in a different unrolled
FSM. Our other work introduces hardware checkpointing
mechanisms for input-dependent algorithms [10]. Such al-
gorithms appear in a much wider range of applications such
as computational sensing analysis. This work, however, only
focuses on optimized checkpoint placement and activation
procedures, and does not offer any charge buffering and
migration required for activating the checkpoints.

3 PRELIMINARIES

In this section we briefly describe the concept of control
data flow graph which is exploited in our checkpointing
algorithm. We also discuss Chime’s target platform.

Control Data Flow Graph (CDFG): A control data flow
graph is a way to visualize the flow of data through the
hardware system. It models the connections and dependen-
cies between processes. The nodes of the graph are basic-
blocks that can represent operations, loops and conditionals.
The edges of the graph indicate the direction of data flow
from one node to the other. We use the information provided
by CDFG to form an optimization function that locates
the highly efficient checkpoints. The system level design
automation is being introduced as the next production boost
in the semiconductor industry [27]. Several HLS tools have
emerged that enable automatic synthesis of high-level spec-
ification codes such as C/C++ to low level RTL specifica-
tions optimized for ASIC or FPGA implementations. In this
work, we use Vivado HLS [1] for our high-level synthesis
and implementation purposes. Vivado HLS automatically
generates CDFG from high-level C/C++ codes.

Energy harvesting platform: Chime targets general bat-
teryless devices with intermittent power source. For experi-
mental evaluations, we adopt the energy harvesting model
from [15]. UMass Moo board is equipped with an antenna
module that harvests RF power from an RFID reader. The
harvested energy is stored in a capacitor which is the only
energy source of the device.

4 CHECKPOINTING OVERVIEW

Chime applies the checkpointing method in two phases:
design time and real time operation. During the design time,
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Fig. 1. Global flow of our checkpointing design.

Chime locates the checkpointing spots and automatically
embeds the checkpointing circuit for storing data. We first
find the overhead cost of checkpointing at the end of each
state in terms of energy and time. Next, we apply our
optimization methods to find the best checkpoints which
incur minimum overhead cost. The maximum distance be-
tween two consecutive checkpoints is upper-bounded to
avoid recomputation due to the power failures. After the
checkpoints are placed, the checkpointing circuit is inserted
to enable storing and retrieving data. We will show that
hardware implementation of such circuits incur very low
cost. Chime automatically locates the checkpoints and em-
beds the circuit within the HDL code of the design.

During the real time operation, the available energy
source is sensed before each checkpoint operation to decide
whether or not to activate the checkpoint (on the already
established checkpointing circuits). This avoids unnecessary
checkpoints when the power supply can sufficiently feed
the system. The global flow of our approach is illustrated in
Figure 1.

5 CHECKPOINT PLACEMENT: COST QUANTIFICA-
TION

In this section we explain our algorithms for finding the
best locations to insert the checkpoints. First, we begin with
a motivational example that shows the importance of check-
point placement strategy on system’s performance. Next, we
explain how to find the checkpointing and recomputation
energy overhead at different states. In the following section,
using the computed costs, we present our checkpointing
strategies. We define our problem in the following format:

Objective. Enabling running lengthy applications on ASICs
with energy harvesting sources.

Given. High-level synthesis design of the ASIC. The en-
ergy harvesting platform properties. In our experimental
platform, we need the information about the capacitor’s
characteristics.

Problem. Finding optimal locations to insert the checkpoints
that incur minimum energy overhead and maximally reduce
recomputation energy cost in case of power failures.

5.1 Motivational Example
At each checkpoint location, all the information that is
needed for restarting the computations from that position

Failure at state: 1 2 3 4 5
First strategy’s resource loss 2 5 12 22 30

Second strategy’s resource loss 2 6 9 21 14

TABLE 1: Energy loss is calculated for failures at different
states.

should be stored. Depending on the progress in the compu-
tations, the amount of data to be stored varies. Larger data
makes checkpointing more costly, since more data should
be written on and read from the memory. In the following
example we show the importance of properly inserting the
checkpoints. Figure 2 shows a CDFG with five states. The
cost for processing each state has been marked on the figure.
For example, the cost for completing the first state (S1) is
2 energy units. We compare two checkpointing strategies;
Strategy 1 inserts the checkpoints at points A1 and A2 and
Strategy 2 inserts the checkpoints at points B1 and B2. The
figure shows the checkpointing cost at each point, e.g., the
cost of checkpointing at A1 is 1 energy unit.

A2=9 B2=4

States: S2=4 S3=7 S4=12 S5=8S1=2

B1=2A1=1Checkpoints:

Fig. 2. Different checkpointing strategies affect the performance. Com-
putational cost of the states (S1, S2, ..., S5) are shown. Checkpoints are
marked as A1 and A2 (Strategy 1), B1 and B2 (Strategy 2) with numbers
next to them indicating their cost. Strategy 2 outperforms Strategy 1.

Now we calculate the energy loss caused by failures at
different states. If the failure occurs at the end of state 1
(S1), the loss for both strategies is 2 units since we spend
2 energy units on S1 (which is the cost of S1). If the failure
occurs at state 2 (S2), the energy loss for the first and second
strategies are 5 and 6 units respectively. In Strategy 1, since
A1 is checkpointed, we only lose the cost of S2 which is 4
units. We also spend 1 unit for checkpointing at A1. Thus
in total we lose 4+1=5 units. In Strategy 2, for a failure at
S2, we lose all resources that are spent at S1 and S2, that is
2+4=6 units. Using the same loss calculation method, Table
1 shows the resource loss for failures at different states for
the two strategies. Assuming that the failures happen with
equal probability, Strategy 2 outperforms Strategy 1 since
the sum of the losses incurred by Strategy 1 is 71 units while
it is 52 units for Strategy 2. The reason behind this is that the
total cost of checkpointing at B1 and B2 is less than that of
A1 and A2. In addition, checkpoints B1 and B2 are inserted
at the end of the states that consume more energy.

5.2 Computing cost function
Chime measures the checkpoints energy cost as well as the
computational energy at different states for finding the ideal
checkpoint locations. We exploit CDFG output files from
HLS tools. The outputs also provide information about the
Finite-State Machine (FSM) of the design. Figure 3 shows an
example CDFG and its corresponding FSM.
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Fig. 3. CDFG, FSM, and State-order of the design. An example check-
point is inserted between s3 and s4.

We define a set of notations as follows. We denote
a graph corresponding to the CDFG by G1(B,L), where
B = {b1, ..., bN} is the set of basic-blocks (e.g., adder,
multiplier, condition) and L is the set of links (edges)
indicating the flow of data through the basic-blocks (nodes)
in the CDFG. FSM graph is denoted by G2(S,E) where
S = {s1, ..., sM} is the set of states (nodes) and E is set of
edges showing the transitions between the states in FSM. S
is a partition of the set B; each node in B belongs to exactly
one of the states in S. Some basic-blocks have registers that
can save outputs for future clock cycles. To keep track of
registers needed for checkpointing, we define a Boolean
function P (bn, bm) for bn, bm ∈ B. The function’s output
is true when the following conditions hold: first, bn has a
register. Second, there is a path between bn and bm such
that non of the basic-blocks in the path (except bn and bm)
has registers. If such a path exists, for recovering it the value
of the register bn should be stored. We refer to the path as a
cp-path. A sample cp-path is shown in Figure 3.

The overhead cost of checkpointing at a state is deter-
mined by the amount of registers needed to be stored for
recovery which is calculated in Pseudocode-1. We denote by
Cost(esisj ) the number of bits needed for checkpointing at
state sj given that the previous state was si. First, we list all
basic-blocks that should be stored for checkpointing in a set
Φ. For an edge esisj in E, we initially set Φ as empty (Line
1-2). Next, we add to Φ all the basic-blocks of the cp-paths
which start before sj and end after sj or vice versa (Line 3-
9). If esisj is a loop edge (such as es3s2 in Figure 3), we also
add all the basic-blocks in the cp-paths starting at a state
between sj and si and ending at sj (Line 10-14). Finally,
to calculate the cost of checkpointing, we add the width
of all registers in Φ (Line 15-17). The overhead Cost(esisj )
is converted to energy cost based on the properties of the
underlying NVM (Table 4). For finding the computational
energy cost at each state, we performed power simulations
using Synopsys Design Compiler.

6 CHECKPOINT PLACEMENT: OPTIMIZATION AL-
GORITHMS

The CDFG and FSM of the design give general information
about the flow of data during the computation process.
However, they do not provide complete information about
runtime behavior of the system. In the following we propose
two separate methodologies for inserting the optimal check-
point locations. The first method targets scenarios where

Pseudocode-1: Calculate Cost of Checkpointing.
1 for esisj ∈ E
2 Φ = ø
3 for sv : 1 ≤ v ≤ j − 1
4 for su : j ≤ u ≤M
5 for bn, bm which bn ∈ sv and bm ∈ su
6 if P (bn, bm) = true
7 Φ = Φ ∪ bn
8 if P (bm, bn) = true
9 Φ = Φ ∪ bm
10 if j ≤ i
11 for sv : j ≤ v ≤ i
12 for bn, bm which bn ∈ sv and bm ∈ sj
13 if P (bn, bm) = true
14 Φ = Φ ∪ bn
15 Cost(esisj ) = 0
16 for b ∈ Φ
17 Cost(esisj ) = Cost(esisj ) + width(b)

the CDFG is input-independent, i.e., different inputs do not
change the computational flow. The second method targets
input-dependent CDFGs.

6.1 Optimized algorithms for input-independent CD-
FGs

For finding the optimal checkpoint locations, Chime needs
to know the order of execution of states which we refer to
as state-order. State-order is derived by unrolling the FSM
and turning it into an acyclic sequence of states. As can be
observed in Figure 3, the state-order keeps the state number
at each clock cycle. We denote the length of the state-order
by T (which is 5 in the example). We performed RTL-level
simulations in ModelSim to find the state-order.

Dynamic programming: To minimize the checkpointing
overhead, it is desirable to insert the checkpoints only before
power failures. However, the source unpredictability does
not allow us to do so. Based on the energy source capac-
ity and average computation power consumption, Chime
adjusts the distance between two consecutive checkpoints.
A more conservative approach sets a smaller distance be-
tween two checkpoints which ensures the application will
be completed in a long run but it introduces more overhead.
A larger distance between the checkpoints can be more
efficient but may increase the risk of computation loss.

Table 2 defines the parameters that are used in our
algorithms. The objective is to insert the checkpoints such
that the overall energy to finish all the T states in the
state-order, is minimized. By the overall energy, we refer
to the computation and the checkpoint overhead energy.
The objective functions is denoted by Cind

OF (t, k) which is
the overall energy for completing k checkpoints at the end
of the tth state of the state-order (for input-independent
CDFGs). The cost CCP (t) corresponds to Cost(esisj ), where
si is the (t− 1)

th state and sj is the tth state of the state-
order. The cost CCO(t) is the sum of the computation energy
consumptions of all the states from the beginning to the tth

state in the state-order.
We exploit dynamic programming to find the checkpoint

locations. The algorithm is shown in Pseudocode-2. The
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T Length of the state-order
CCP (t) Energy consumption for checkpointing at

the tth state in the state-order
CCO(t) Energy consumption for running the appli-

cation until tth state in the state-order
Dmax Maximum number of states between two

consecutive checkpoints in the state-order

TABLE 2: Defining parameters.

Pseudocode-2: Dynamic programming for mini-
mizing Cind

OF

1 for t : 0 ≤ t ≤ T
2 for k : 0 ≤ t ≤ Kmax

3 Cind
OF (t, k) = +∞

4 for t : 0 ≤ t ≤ Dmax

5 Cind
OF (t, 0) = −CCO(t)

6 for k : 1 ≤ k ≤ Kmax

7 for t : k ≤ t ≤ T
8 Cind

OF (t, k) = CCP (t) + min1≤i≤Dmax

9 {Cind
OF (t− i, k − 1)− CCO(t) + CCO(t− i)}

initial conditions are set to ensure that the first checkpoint is
located at a maximum distance of Dmax from the beginning
(Lines 1-5). By Kmax, we denote an upper bound on the
number of checkpoints which satisfies the following condi-
tion: Kmax >

T
Dmax

. The minimum OF cost for inserting the
kth checkpoint at t, includes the cost of checkpointing at that
point plus the minimum overall energy that is consumed
before the tth state (Lines 6-9).

6.2 Optimized algorithms for input-dependent CDFGs

For locating the checkpoints in input-dependent CDFGs,
additional modifications are required. The goal of our algo-
rithm is to place the checkpoints such that the total energy
to execute all the states in the state-order is minimized.
Concurrently, our algorithm should ensure completion of
the application for different input signals; for the same
application (such as FFT-based peak detection) different
inputs may result in varying state-orders. The variability
of state-order is challenging since during runtime there is
no such flexibility to dynamically change the location of
checkpoints based on the input data.

To address this challenge, we devise a new correspond-
ing algorithm based on the following key observations: the
structure and number of different states in design’s FSM is
independent of the input. However, based on the input, the
number of times that data flows through the loops varies.

Figure 3 shows the execution of an algorithm for one
specific input. If the input changes, the overall structure of
CDFG and FSM remain the same but different state-orders
might be created. For this example, data can flow through
the feedback loop between S2 and S3 for a different number
of times for each input, resulting in state-orders with various
lengths. Another observation is that for many applications
such as FFT-based peak detection algorithms, the number
of different states in FSM is limited. Thus, it is reasonable
to add a checkpointing circuit at the end of each feedback
loop. We refer to that location by loop-end. For instance, such

Pseudocode-3: Dynamic Programming for mini-
mizing Cdep

OF

1 for t : 0 ≤ t ≤ ∆TLoopEnd
max

2 for n : 0 ≤ t ≤ Nmax

3 Cdep
OF (t, n) = +∞

4 for t : 0 ≤ t ≤ Dmax

5 Cdep
OF (t, 0) = −CCO(t)

6 for n : 1 ≤ n ≤ Nmax

7 for t : n ≤ t ≤ ∆TLoopEnd
max

8 Cdep
OF (t, n) = CCP (t) + min1≤i≤Dmax

9 {Cdep
OF (t− i, n− 1)− CCO(t) + CCO(t− i)}

loop-end state is S3 on Figure 3. That way, if for some input,
data iteratively flows through the loop for a large number
of times, given the checkpointing circuit, we can save the
computational progress. Otherwise, if no such circuit exists,
we may never be able to complete the application due to the
limited energy storage capacity and the transient source.

Similar to our approach for input-independent check-
pointing, we mitigate the source transient behavior by
setting a limit on the distance between two consecutive
checkpoints. The limit is calculated based on the average
power consumption of the computational application and
the energy supply capacity.

Pseudocode-3 demonstrates our approach for inserting
checkpoints for input-dependent benchmarks. Our assump-
tion is that we have already placed the loop-end check-
points. Here we run the algorithm to locate additional
checkpoints between each two consecutive loop-end states
in order to meet the Dmax criteria. Thus, if two loop-end
checkpoints are closer than Dmax states from each other,
no more checkpoints will be added in between them. Here
our objective function denoted by Cdep

OF (t, n) measures the
cost of inserting additional checkpoints in between two con-
secutive loop-ends. Thus, Pseudocode-3 should be executed
for finding the checkpoints in between any two subsequent
loop-ends whose distance is more than Dmax states.

First, we set the initial conditions by enforcing a check-
point at a distance equal or less than Dmax from the be-
ginning loop-end state (Lines 1-5). To meet the maximum
distance constraint, the total number of checkpoints should
be at least equal to ∆TLoopEnd

max

Dmax
, where ∆TLoopEnd

max is the
number of states between the two consecutive loop-ends
in FSM. For exploring the effect of different number of
checkpoints on our objective function, we run the algorithm
for up toNmax number of checkpoints, whereNmax is equal
to ∆TLoopEnd

max

Dmax
∗ 2. The minimum cost for placing the nth

checkpoint at the state t is achieved by adding the check-
pointing cost at state t and the minimum overall energy cost
of inserting the rest of (n − 1)th checkpoints before state t
(Lines 6-9).

6.3 Adaptive checkpointing

In hardware checkpointing applications, as opposed to
software, the checkpointing circuits are located during the
design time. However, a preemptive checkpointing strategy
might not be efficient in scenarios that input energy is
sufficient. To cope with the source energy variations, we
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propose an adaptive real time mechanism that senses the
available source energy before each checkpoint. A check-
point is skipped if the source energy level is greater than the
maximum energy consumption between two consecutive
checkpoints; in our target applications, this value can be
measured offline. Otherwise, we complete the predeter-
mined checkpoints and turn off the device to reduce the
recomputation cost, Figure 4. We assume that the average
input power is much less than the average application
power consumption. This assumption is realistic for several
energy scavenging sources and remote energy transfers with
limited energy capacities and charging rates.
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Adaptive Controller

VC < Vth
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CP
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...

VC

C

A
n
te
n
n
a

Fig. 4. Adaptive sensing and checkpoint activation mechanism.

7 ENERGY SUPPLY MODULE FOR CHECKPOINTING
CIRCUIT

The purpose of checkpointing is to preserve the develop-
ments in computation in the case of energy cut-offs. To
save such developments, it is necessary that we use non-
volatile memory. As a result of our efficient checkpoint
locating schemes, generally a small amount of data has to
be stored on NVM. Thus, the time and energy overhead
of writing the checkpointed data onto the memory is quite
low (See Section 9). However, the power requirement for
writing to NVM can be several times higher than that of
the computational IC. Table 3 provides the requirements for
writing data onto a contemporary NAND Flash, and PCM.
The values show the overhead of writing a page of data.
As we discuss in the experiments (Section 9), the average
power for our computational ICs is much lower (less than
0.4mW ).

Page size
(bytes)

Programing
current

(mA)

Programing
voltage

(V)

Average
power
(mW)

NAND Flash 2,112 15-30 2.7-3.6 70.8
PCM 64 0.05-0.10 0.9-3.6 1.7

TABLE 3: Cost of writing checkpointing data to NVM [28],
[29].

The high power requirement imposes unwanted effects
on the already limited energy source of the IC. For example,

it is well-known that batteries suffer from low power den-
sities and exhibit exponentially sharp density reductions in
case of high power [30]. Thus, Chime can benefit from a
separate low-overhead energy module that is responsible
for feeding the checkpointing circuit and transferring the
electric charge from the energy source to the CPC.

We propose a customized and low-overhead energy
supply module for the CPC. Our design utilizes a set of
heterogeneous capacitors. Our approach is based on the
following observations. On the one hand, a relatively small
capacitor (with a capacity much lower than that of the
energy supply of IC) is sufficient to deliver the needed high
power to CPC. On the other hand, the charge of a small
capacitor disappears (leaks) very quickly during the circuit
idle time. Thus, it is necessary to ensure that this capacitor is
charged closely before the checkpointing is initiated. Using
our knowledge of the checkpointing activation, our design
ensures such behavior.

External 
Energy 
Source

Control Unit

DC-DC 
Converter

CPC
Switch 

2
Switch 

3

CPC Capacitor Bank

...
...

CPC Energy Transfer Unit

Switch 0 Switch 1

Fig. 5. Schematic depiction of our proposed topology for energy trans-
ferring.

Figure 5 illustrates the overview of our proposed energy
transferring topology. Here, the large capacitor on the left
is considered to be the primary energy supply of the IC.
The control unit is responsible for managing switches in the
circuit for efficient energy delivering customization. With
the prior knowledge of the load, the control unit estimates
the time by when the small capacitors need to be recharged.
In our proposed design, while one of the smaller capacitors
is connected to CPC, the other small capacitor (the back-up
capacitor) is recharged by the available charge in the large
capacitor.

Another advantage of using small capacitors is that they
reach the minimum voltage required for activating the CPC
much faster and with less required electric charge. This is
because for a given amount of charge (Q) a capacitor with a
smaller capacitance (C) reaches a higher voltage level (since
Q = CV ), and the timing rate of filling to that charge
is proportional to C . The large capacitor instead incurs
lower power leakage in comparison for the same amount
of charge.

To efficiently transfer the available charge from the large
capacitor to the small ones, we make use of an inductor
and two switches which are managed by the control unit. In
this topology first, switch 1 connects the large capacitor and
the inductor to each other. Once a certain (pre-determined)
amount of the available charge (e.g. the amount of charge
required to recharge the small back-up capacitor) is trans-
fered to the inductor, switch 1 is disconnected and switch 2
connects the inductor and the back-up capacitor. When the
back-up capacitor is recharged it then proceeds to replace
the other small capacitor that has already been discharged



8

in the load. By using two alternating small capacitors, we
allow checkpointing to be performed smoothly and without
interrupt. This procedure continues until the CPC completes
its task.

8 CHECKPOINTING USING JTAG
JTAG is an IEEE standard (1149.1) that is usually used for
programming, debugging, or detecting electronic boards
manufacturing issues. For circuits that have this built-in
facility, one can make use of the available JTAG and our
proposed methodologies for checkpointing purposes. In
this scenario, since our approach would utilize the circuit
built-in facilities, it incurs no area overhead while the time
overhead is increased due to the serial nature of the JTAG
interface. Figure 6 demonstrates an example CDFG in which
the built-in JTAG is used and two locations have been
chosen for checkpointing. Note that, in our approach we
store the information required to restart the computations
from each checkpoint location, however, otherwise all states’
information should be stored which is not ideal particularly
for scenarios where storage is severely limited.

In Out

Fig. 6. Checkpointing example using a conventional built-in JTAG. The
serial JTAG circuitry passes through all the registers on chip.

For JTAG technologies that enable bypassing registers,
the users are provided with a standard interface for check-
pointing their circuit. In this case one can use our proposed
methodologies and activate JTAG only in the optimally
found checkpointing spots. Figure 7 demonstrates an exam-
ple CDFG in which JTAG has been inserted in two locations
for checkpointing purposes. This approach incurs less run-
time and energy overhead compared to the conventional
JTAG circuitry as it skips the unwanted registers and only
passes through the checkpointing register values.

In Out

Fig. 7. Checkpointing example using a bypass JTAG. The serial JTAG
circuitry bypasses all registers and is only activated at the checkpointing
locations.

9 EVALUATIONS

In this section, first we describe the evaluation platform,
including the energy harvesting model and power traces.
Next, we explain in details how the checkpointing circuits
are added to the register-transfer level. We also discuss our

NAND Flash PCM STTM
Read energy (nJ/cell) 1.5 1 0.2
Write energy (nJ/cell) 17.5 6 1.6
Read latency (ns/cell) 6.2 0.8 0.4
Write latency (ns/cell) 125 15 7

Density 1× 1-2.5× 3.75-16×

TABLE 4: NVM properties based on [32], [33].

evaluation benchmarks. Finally, we provide our evaluation
results that report various time, energy, and area measure-
ments to verify Chime’s applicability and effectiveness.

9.1 Evaluation platform

We use Xilinx HLS tool, Vivado HLS, to obtain CDFG
and Verilog register-transfer-level (RTL) description from
C/C++. Vivado HLS produces CDFG as an intermediate
output in standard Extensible Markup Language (XML)
format. We implement a C# program to extract CDFG and
FSM form the XML file. As discussed in Section 6, we
need to find the state-order to have runtime information
of the design. The state-order is produced by simulating
the Verilog codes in ModelSim. We have also used Synopsis
Design Compiler with FreePDK 45nm library [31] to eval-
uate power consumption and area overhead. We followed
the setup shown in Figure 8 for locating and embedding the
checkpoints at the RTL. Vivado HLS compiles only a subset
of standard C/C++ for hardware implementation. Thus, we
modify the benchmark source code structure accordingly.

Source 
Code 
C/C++

Modified 
Code
C/C++

Vivado 
HLS

Verilog

ModelSim State-order

CDFG xml

Checkpoint Placement 
Algorithm

Verilog with 
Checkpoint

Fig. 8. Depiction of our automated tool for checkpoint placement.

In our energy harvesting platform, Von is the capacitor’s
voltage at which the device turns on after a power failure
and Voff is the minimum operational voltage. We denote
by Ileakage, the leakage current of the device which is
determined by the power simulation. The nominal values
in our model are: Von=5.4V, Voff=3V, and source capacity is
3.3µF (except for RSA benchmark which is 10µF). Thus, the
amount of available energy in the period from Von to Voff

equals 33.26µJ (100.8µJ for RSA benchmark).
To enable retrieving information after a power failure,

the checkpointed data should be saved on an NVM. The
energy and time for writing data on the memory affects
the performance of our methods. A variety of NVMs with
different characteristics have been developed. While NAND
Flash is the state-of-the-art high performance NVM, Phase
Change Memory and Spin Torque Transfer Memory are two
emerging NVM technologies that exhibit better energy and
speed performances. The properties of these memories are
shown in Table 4.
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9.2 Power traces
We have generated a set of real power traces using UMass
Moo board by varying its location with respect to the RFID
reader. We have used an oscilloscope (Tektronix, MSO 5054)
to capture the capacitor’s voltage. We have also generated
synthetic power traces with different mean power and pat-
terns. The power traces include impulses with amplitudes
taken from a Gaussian distribution and inter-arrival time
taken from a Poisson distribution. We will show that when
the average source power is much less than the power con-
sumption, the source pattern does not considerably affect
the checkpointing results.

9.3 Checkpointing circuit
For an input high-level source code, Vivado HLS generates
separate modules for each C/C++ function in Verilog. There
is also a module instantiation for each C/C++ function-call
in Verilog description. This creates a hierarchical structure of
modules. Since the checkpointing circuit must have access
to sub-modules’ registers, the number of modules’ I/Os
tremendously increases. To avoid the design complexity, we
implement a distributed CPC architecture. In this architec-
ture, the connection between CPC modules are via relatively
small 35-bit buses. CPC in each module is recursively con-
nected to its child CPCs in sub-modules. This structures can
be regarded as a tree whose root is in the top-module. The
root is the only CPC that includes memory controller circuit
and is connected to the NVM.

At the time of checkpointing, the root CPC receives a
permission to start checkpointing. Before starting its own
checkpointing, the root gives permission to other CPCs
according to a depth first order. It means that the CPCs
which receive the permission, recursively pass it to their
child nodes before sending their own data. The data passes
through CPCs towards the root CPC and the memory bus.
Checkpointing procedure is completed when the root CPC
sends its own data on the memory bus. Figure 9 shows a
simple tree structure of CPCs. The numbers in the circles
represent order of sending data (lowest number sends first).

Verilog module

Checkpointing 

circuit (CPC)

N
o
n
-v
o
latile m

em
o
ry

1 2

3 4

5

Order of 

checkpointing 

Fig. 9. Checkpointing circuit (CPC) tree structure and depth first order
for sending data (lowest number sends first).

9.4 Benchmarks
To corroborate the effectiveness of our proposed frame-
work, we evaluate Chime on a set of detection, compu-
tational, and security algorithms that are all applicable
to medical implant devices. Our benchmarks consist of
both input-dependent and input-independent algorithms.

Our input-dependent benchmarks include FFT-based peak-
detection methods (e.g., in ECG) with varying lengths, and
matrix-vector multiplications (e.g., used for sensing analy-
sis). Moreover, our input-independent benchmarks include
different cryptographic circuits such as: RSA [34], a public-
key cryptography; AES [35], a symmetric-key cryptography;
and cryptographic hash functions MD5 [36], SHA1, SHA256,
and all five SHA3 round-3 candidates (BLAKE, Grøstl, JH,
Keccak, and Skein) [35]. Our RSA benchmark encrypts 1024-
bit data under a 1024-bit public key and a constant exponent
(65537). AES benchmark encrypts 128KB data under 128-
bit key. Hash benchmarks map 128KB input to their mes-
sage digest. In cryptographic algorithms, the unrolled state-
orders are independent of the inputs in order to prevent side
channel attacks. Thus, we plug in random inputs to extract
the state-order of our cryptographic benchmarks. Note that
in all of our evaluations each method has been evaluated
based on its input-dependency orientation, unless otherwise
specified.

Periodic checkpointing: To have a comparison basis
for our dynamic programming-based algorithm, we also
applied a periodic approach for inserting the checkpoints.
In the periodic method, the checkpoints are inserted at
equal distances from each other. The periodic checkpointing
does not take into account the cost of checkpointing and
computational energy loss while locating the checkpoints.

9.5 Evaluation results

The total energy consumption for completing an application
is the sum of the computation and the overhead energy.
The overhead energy is the sum of recomputation energy
and the energy of read/write operations on NVM for check-
pointing. We define normalized energy, a metric that measures
the ratio of the total consumed energy to the computation
energy consumption. Likewise, we define normalized time to
measure the time overhead.

We study the relationship between number of check-
points and the normalized energy and time in Figure 10. The
experiment is done on MD5 benchmark, using dynamic-
programming method. The NVM type is PCM. Varying
Dmax in the dynamic method results in different number
of checkpoints. The simulations are run for ten different
synthetic power traces whose average power are 0.2% of
the MD5 computation power. The average results are re-
ported. As the number of checkpoints increases, due to
checkpointing overhead, the normalized energy and time
values increase. For very small number of checkpoints, the
normalized energy and time values grow dramatically. The
reason is that a lower number of checkpoints increases
the recomputation overhead due to insufficient checkpoints.
The optimal number of checkpoints for MD5 is 4 for our
platform.

Figure 11 shows the capacitor voltage behavior over time
for completing MD5, and running FFT256. The checkpoint
locations and the corresponding computational progresses
are shown in the figure. The adaptive mechanism turns
off the device after the checkpoint to avoid recomputa-
tion and save energy. For instance in the MD5 example,
if checkpoints are not inserted, only about 22.8% of the
computation will be completed before the power failure
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(when the voltage drops down to Voff ) and this scenario
will be repeated again next time the capacitor is charged.
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Fig. 10. MD5 normalized energy and time behavior for different number
of checkpoints.

Time (s)

Fig. 11. Checkpoint locations and corresponding progresses for MD5,
and FFT256.

We explore the effect of different power source patterns
on Chime’s performance. We run AES, MD5, SHA256, and
FFT64 benchmarks with four synthetic (S1-S4) and four real
power traces (S5-S8). Figure 12 reports the corresponding
normalized energy values. The average power of all the
traces are 3.5µW which is at least 2 orders of magnitude
less than average power consumption of the benchmarks.
As can be seen on the figure, normalized energy values of
all four benchmarks do not considerably change over the
synthetic and real power traces. In scenarios, where the
rate of energy consumption dominates the rate of energy
harvesting, such as our target applications, the traces pattern
do not affect the capacitor discharge period. Thus, one can
apply our algorithms to find the location of the checkpoints
solely based on device specifications and the application.

To verify the effectiveness of our dynamic programming
algorithm, we compare it with the periodic checkpointing
approach. Figure 13 illustrates the normalized energy values
for the two methods versus the number of checkpoints. The
target benchmark is SHA256. The average result for ten syn-
thetic source power traces are reported. For each trace the
mean power values is 0.2% of SHA256’s power consump-
tion. When the number of checkpoints is around the optimal

Fig. 12. AES, MD5, SHA256 and FFT64 normalized energy for different
power traces with equal average power and various patterns.

number (3), the dynamic method significantly outperforms
the periodic method and introduces much lower overhead.
For larger number of checkpoints, the overhead of both
methods converge due to the high density of checkpoints.
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Fig. 13. Performance of dynamic and periodic methods on SHA256.

We study our adaptive mechanism’s performance under
different source power conditions. We generate synthetic
power traces with different mean power values that range
between 0.2% and 300% of SHA256 average power con-
sumption (which is 1.85mW in our experiments). Figure 14
demonstrates the normalized energy results for applying the
dynamic-only and dynamic-adaptive methods on SHA256.
Both methods are simulated for the optimal number of
checkpoint (3). The adaptive mechanism outperforms the
non-adaptive method for all tested power traces.

Chime finds optimal number of checkpoints for sce-
narios where the average harvested power is much less
than the power consumption. Thus, the discharge duration
of the capacitor only depends on the application’s energy
consumption. However, as the energy harvesting rate ac-
celerates, the capacitor’s discharge duration increases. As a
result, even after completing a checkpoint, the capacitor has
enough energy to continue running the application. If the
capacitor’s energy does not last until the next checkpoints,
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the cost of recomputation increases. This effect explains
the deep gap between the two methods’ performances in
Figure 14. In Figure 15, we show the voltage behavior of
the capacitor over time, when the average source power is
around 25.4% of the application power consumption. The
figure shows that the adaptive mechanism completes the
application almost 30% faster than the non-adaptive one.
For a larger input power the capacitor’s energy will last
until the next checkpoint, resulting in reducing the gap
between the two methods.
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Fig. 14. Comparison of dynamic-only and dynamic-adaptive mecha-
nisms on SHA256 for different mean source powers.
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Fig. 15. Simulated capacitor voltage for dynamic-only and dynamic-
adaptive methods as SHA256 is running.

To study the effect of different NVM technologies, we use
NAND Flash, a state-of-the-art technology, and two emerg-
ing technologies, PCM and SSTM in our simulations. Table
4 shows the characteristic of these memories. We measure
time and energy overheads of the benchmarks based on the
memory properties, and report the results in Figure 16. In
this experiment, all applications have been evaluated based
on our input-dependent approach. On the figure, MV300k
and MV400k refer to matrix-vector multiplication designs.
The figure shows the average results of ten synthetic power
traces. The average power of the traces is two order of mag-
nitude less than the power consumption of the benchmarks.
The impact of NVM characteristics can be better observed in
some applications. However, given the lower cost of Flash
and the relative gains, using a more efficient memory may
not be justified.
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Fig. 16. Time and energy overheads for using PCM, Flash, and STTM.

To further evaluate the effect of different NVM tech-
nologies, we measure the corresponding normalized en-
ergy and time metrics versus the number of checkpoints,
Figure 17. The target benchmark is SHA256 and dynamic-
adaptive algorithm is applied. The average result for ten
synthetic source power traces are reported. For each trace
the mean power values is 0.2% of the power consumption of
SHA256. When the number of checkpoints is low, the mem-
ory performance has an insignificant effect on the overall
efficiency. This is because the overhead of the checkpoints
is small. However, for larger number of checkpoints the
memory characteristics affects the overhead considerably.
Thus, memory selection matters only when the overhead
introduced by the checkpoints is notable.
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Fig. 17. SHA256 normalized energy and time values for PCM, Flash,
and STTM.

Table 5 shows the time overhead for different bench-
marks for our JTAG based CPC design discussed in Section
9.3. For our evaluations JTAGs with a speed of 100Mbps are
used, which is a typical speed for an operation frequency of
915MHz (The Moo board working frequency). The memory
type is PCM. The capacitor is 3.3µF (10µF for RSA). The
checkpoints incur an time overhead of less than 1.6%, time
overhead of for a conventional JTAG and a timing overhead
of less than 0.16% for JTAGs with bypassing capability. The
low overhead of our approach experimentally verifies the
practicability of Chime in realization of different computing
circuits on energy harvesting devices. Table 5 also provides
the total number of registers as well as the number of check-
pointing registers and the optimal number of checkpoints
for each of the benchmarks, that is a direct output of our
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Benchmarks
Total Number

of
registers

Number of
CP

registers

Number of
CPs

Time
overhead

bypass
JTAG(%)

Time
overhead
JTAG(%)

RSA 92895 22742 83 0.008 0.03
AES 11590 822 3 0.01 0.13
MD5 13566 1096 4 0.004 0.05
SHA1 7845 274 1 0.003 0.11

SHA256 18279 822 3 0.07 1.59
BLAKE 21528 274 1 0.007 0.55
Grøstl 33282 822 3 0.005 0.23

JH 38726 3562 13 0.013 0.14
Keccak 18962 1918 7 0.167 1.65
Skein 14672 274 1 0.002 0.15
FFT64 1931 548 2 0.003 0.01
FFT128 2053 1644 6 0.004 0.005
MV300k 383 274 1 0.003 0.004
MV400k 548 514 2 0.003 0.003

TABLE 5: Statistics of the dynamic checkpointing method.
The runtime overhead on the benchmarks correspond to our
JTAG based CPC design.

dynamic checkpointing methodology.
Table 6 shows the time, energy, and area overheads for

different benchmarks for our customized CPC architecture
discussed in Section 9.3. The memory type is PCM. The
capacitor is 3.3µF (10µF for RSA). The checkpoints incur
an energy overhead of less than 11%, time overhead of
less than 16%, and area overhead of less than 9%. The
results verify effectiveness and applicability of Chime. As an
example consider the RSA benchmark. The optimal number
of checkpoints is 83 for RSA benchmark, which means the
capacitor should be charged/discharged approximately 84
times to complete RSA. The capacity required for running
RSA continuously is 84 times more than our model’s capac-
ity (10µF). Thus, our methods enable running a much longer
computation on a small capacitor.

Note that for the JTAG based CPC design, we do not
provide the energy and area overhead of checkpointing
as those overheads are directly affected by the specific
implementation model of the JTAG within the circuit. For
example, depending on the number of active pins that are
assigned for test data in and test data out for various ver-
ification purposes, JTAG might incur different timing and
energy overhead that are independent of the checkpointing
methodology. Our reported timing overhead analysis, how-
ever, assumes that a pin that is assigned for checkpointing
serially passes the register values through the JTAG cir-
cuitry. Serial transfer of register values is the fundamental
property of JTAG circuitry design. However, for our custom
designed CPC, we are able to estimate the energy, runtime,
and area overhead of the checkpointing circuitry. To do so,
we implement the nested tree structure proposed in Section
9.3 in Verilog and use the Synopsis Design Compiler with
FreePDK library. The total energy overhead of checkpoint-
ing is the summation of the energy used by the CPC circuit
and that required for writing data onto NVM.

To experimentally compare the efficiency of our pro-
posed optimizations based upon the input-dependency ori-
entation of the benchmarks, we evaluate both of our ap-
proaches on AES and SHA256. Both AES and SHA256 have
input-independent CDFGs. The reported results are for our
customized CPC architecture. Table 7 shows the normalized
time and energy overhead of checkpointing when either of
the input-dependent or input-independent approaches are

Benchmarks Time overhead(%) Energy overhead(%) Area overhead(%)
RSA 1.1 1.1 1.2
AES 0.4 1.4 4.5
MD5 5.0 5.7 3.2
SHA1 0.4 0.2 2.5

SHA256 1.8 1.8 2.1
BLAKE 0.2 0.6 1.5
Grøstl 8.2 9.1 3.0

JH 11.0 10.3 1.2
Keccak 15.7 10.9 1.2
Skein 0.5 0.6 5.0
FFT64 1.46 0.37 3.2

FFT128 2.08 0.93 3.2
MV300k 1.06 0.85 8.5
MV400k 1.38 0.56 8.5

TABLE 6: Overheads of the dynamic method on the bench-
marks with our custom designed CPC.

Input-dependent Input-Independent Improvement
Time Energy Time Energy Time Energy

AES 2.1% 3.57% 0.4% 1.4% 5.2× 2.5×
SHA256 14.4% 10.8% 1.8% 1.8% 8.0× 6.0×

TABLE 7: Comparing the effect of our optimizations for
input-dependent versus input-independent checkpointing
methodologies.

applied to the benchmarks. It can be seen that taking advan-
tage of the input-independent nature of these benchmarks’
CDFGs results in much lower checkpointing overhead. For
example, for SHA256 benchmark, we achieve 8 folds im-
provement for time overhead and 6 folds improvement in
energy overhead compared to the scenario in which this
benchmark has been check-pointed using our general input-
dependent approach. This evaluation clearly demonstrates
the effectiveness of our proposed framework for checkpoint-
ing different methods according to their input-dependency
orientations.

10 CONCLUSION

This work proposes a set of methodologies and supported
designs for enabling long-running and complex compu-
tations on IoT devices with limited and intermittent en-
ergy sources. Our approach devises techniques for locating
optimal checkpoints that facilitate gradual progresses of
computations as the power becomes available. We propose
algorithms for benchmarks with input-independent and
input-independent control data flow graphs. We provide
mechanisms for supplying the checkpointing circuit and
adjusting the checkpointing rate in realtime according to
the power source variations. We provide automated tools
that takes the high-level synthesis design as the input and
outputs the Verilog description of the design with em-
bedded checkpoints. Our experiments target a wide range
of linear algebra, data transformation, and cryptographic
benchmarks. We evaluate the performance for different
power source conditions. The results verify the effectiveness
of our approach in recomputation cost reduction caused
by the power outages. The overhead associated with the
checkpoints was shown to be very low: less than 16% energy
overhead, less than 11% time overhead and less than 9%
area overhead were reported for our benchmarks.
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